Contents lists available at ScienceDirect

Information Sciences

journal homepage: www.elsevier.com/locate/ins

Rough data-deduction based on the upper approximation

Shuo Yan^{a,*}, Lin Yan^b, Jinzhao Wu^{c,a}

^a School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China

^b College of Computer and Information Engineering, Henan Normal University, Xinxiang 453007, China

^c Guangxi Key Laboratory of Hybrid Computation and IC Design Analysis, Guangxi University for Nationalities, Nanning 530006, China

ARTICLE INFO

Article history: Received 24 December 2014 Revised 10 August 2016 Accepted 5 September 2016 Available online 5 September 2016

Keywords: Rough deduction-space Rough data-deduction Deduction relation Upper approximation Rough relation Support

ABSTRACT

This paper describes how to construct a structure called a rough deduction-space. It is an extension of an approximation space, and incorporates a deduction relation related to data connections. In the rough deduction-space, a notion of data deduction is introduced and is referred to as rough data-deduction. Based on integrated information of both the upper approximation and the deduction relation, rough data-deduction accomplishes deductions from data to data, which is different from any logical deduction in mathematical logic. Research on rough data-deduction covers two activities: the rough data-deduction with respect to an equivalence relation and rough data-deductions with respect to different equivalence relations. The activities also concern the relationship between rough data-deduction and rough relations that are rough representations of the deduction relation. This leads to properties involving approximate features implied by rough data-deduction, and reflecting the characteristic that rough data-deduction can describe rough data-connections. In particular, since the research correlates closely to granules, it may offer an avenue of research on granular computing. As an example, a specific problem is modeled by a rough deduction-space. The rough data-connections in the problem are described by use of rough data-deduction.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

The lower approximation and the upper approximation introduced in rough set theory [10] are important notions to approximate the representation of a concept, and are used to define rough sets. Moreover, research on rough sets has suggested different approaches [1–3,8,11,15,17–20,26,28–30] which demonstrate various processes of using them to deal with issues. At the same time, we noticed that the lower and upper approximations are always linked together in the approaches, and generally depend on each other in the process of representing a concept. However, when examining them separately, we can see that the lower approximation is limited to the inside of the granule that is the formal expression of the concept, whereas the upper approximation is generally an extension of the concept because it covers the granule. Therefore the lower approximation can be regarded as a rigorous representation, and the upper approximation can be viewed as a liberal representation about the concept.

Regarding the upper approximation, because it covers the granule, the upper approximation often contains the information which cannot be accurately characterized by the concept. We may as well refer to the information as approximate

* Corresponding author. E-mail addresses: 11112097@bjtu.edu.cn (S. Yan), hnsdyl@163.com (L. Yan).

http://dx.doi.org/10.1016/j.ins.2016.09.011 0020-0255/© 2016 Elsevier Inc. All rights reserved.

CrossMark

information which serves as our focus in the following discussion. On the other hand, because the lower approximation is limited to the inside of the granule, it needs to satisfy stronger conditions than those that the granule satisfies. The stronger conditions make the lower approximation too rigorous to have approximate information to be used. This motivates us to consider data processing that only correlates with the upper approximation, and does not concern the lower approximation.

In order to investigate the approximate information presented in the upper approximation, we intend to introduce a notion of data deduction. Data deduction will be based on the upper approximation, and will also incorporate information related to data connection. In fact, we want to integrate the approximate information into data deduction, so as to characterize unclear data connections by use of a deduction method. Unclear data connections are closely connected with actual problems that attract our attention. We are especially interested in a way to describe unclear data connections, and this serves as the focus of our paper. First, let us explore what is meant by unclear data connections.

Example 1. Let $A_1, A_2, \dots, A_n (n \ge 2)$ be enterprises in an automobile manufacturing industry chain. They are linked together by supply and demand relations such that A_i provides products to A_{i+1} ($i = 1, 2, \dots, n-1$). Then A_1, A_2, \dots , and A_n form a product supply channel, or show clear connections from A_1 to A_n through A_2, A_3, \dots , and A_{n-1} . Now consider A'_1 that is an enterprise of the same kind as A_1 . In this case, there is a potential supply channel from A'_1 to A_n because A_1 may be replaced by A'_1 in the production competition. Similarly, when A'_n and A_n are enterprises of the same kind, the potential connections from A_1 to A'_n also exist. However, the connections from A'_1 to A_n or from A_1 to A'_n are not very clear.

Generally, if we observe things around us, we can be aware of the existence of unclear data connections with the same form as those in Example 1. Consider the following examples:

Example 2. If the persons B_1 , B_2 and B_3 are drug traffickers, and B_i sells drugs to B_{i+1} (i = 1, 2), then there is a drug-dealing chain from B_1 to B_3 via B_2 . If B'_3 is a partner or a friend of B_3 , then there may be drug-dealing connections from B_1 to B'_3 . However, the connections are not very clear.

Example 3. Consider the people C_1 , C_2 and C_3 , where C_i lends money to C_{i+1} (i = 1, 2). Thus the loan relations from C_1 to C_3 through C_2 are clear. Now if C'_1 is the son of C_1 , then there may exist loan connections from C'_1 to C_3 . However, the connections are not very clear.

Example 4. Let D_1 , D_2 and D_3 be the people, such that D_i is an immediate superior of D_{i+1} (i = 1, 2). Obviously, the superior and subordinate relationships from D_1 to D_3 via D_2 are clear. Now if D'_1 is the wife of D_1 , then there may be leadership connections from D'_1 to D_3 . However, the connections are not very clear.

We can define these unclear data connections as *rough data-connections*. Thus, rough data-connections represent a variety of unclear data connections which have the same form as those in Example 1. Section 6 presents a formal discussion on the rough data-connections of Example 1, which will be based on our theoretical research.

Thus, some relationships between objects in actual problems are rough data-connections. In Example 1, the rough dataconnections demonstrate the potential supply channel from A'_1 to A_n , or from A_1 to A'_n . The study of the rough dataconnections may be valuable for enterprise management. Example 2 presents the rough data-connections as the indistinct drug-dealing connections from B_1 to B'_3 . The connections may provide information for establishing a database, helpful for police in their efforts to combat drug abuse and drug trafficking.

So it is important to present a method to describe rough data-connections. The data deduction will be expected to be taken as the method. Indeed, we want to associate rough data-connections with deductions of data from data. This idea originates from mathematical logic [21] which focuses on the discussion of deduction among formulas. The formula deduction brings data deduction to our consideration because rough data-connections relevant to data instead of formulas can be considered as data deductions. We noticed that any deduction generally involves a direction that exists in rough data-connections as well. For instance, the potential supply channel from A'_1 to A_n includes the direction from A'_1 to A_n ; likewise, the indistinct drug-dealing connections from B_1 to B'_3 shows the direction from B_1 to B'_3 , etc. This is consistent with a deduction process from antecedents to a consequent. On the other hand, some connections from data to data can broadly be viewed as data deductions. This also inspires us to consider the association between rough data-connection and a deduction method. Moreover, because rough data-connections are bound up with unclear information that reminds us of the approximate information in the upper approximation, this suggests that we may perhaps connect the data deduction with the upper approximation. In particular, in order to carry out data deductions, the information of data connection, such as data depend on data, data are associated with data, data can be derived from data, etc., also enters into our consideration.

All the ideas contribute to the research topic on data deduction. We will follow the ideas to develop our work. In this case, the work must be different from other research:

First, if we contemplate the research on rough sets together with the deductions, we can see that rough reasoning in rough logic is a way of combining logic and rough sets. The developments in [4,7,9,12,14,22–25,27] are the results of this study. However, the results are relevant to traditional methods used in mathematical logic. Rough reasoning still depends on formulas implementing formula deductions.

Second, from the researches into rough sets, such as those in [1–3,8,11,15,17–20,26,28–30], we know that the upper approximation is usually combined with the lower approximation to approximate a granule. According to the above discussion,

Download English Version:

https://daneshyari.com/en/article/4944907

Download Persian Version:

https://daneshyari.com/article/4944907

Daneshyari.com