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a b s t r a c t

When a sigmoidal feedforward neural network (SFNN) is trained by the gradient-based algorithms, the
quality of the overall learning process strongly depends on the initial weights. To improve the algorithm
stability and avoid local minima, a Mutual Information based weight initialization (MIWI) method is
proposed for SFNN. The useful information contained in input variables is measured with the mutual
information (MI) between input variables and output variables. The initial distribution of weights is
consistent with the information distribution in the input variables. The lower and upper bounds of the
weights range are calculated to ensure the neurons inputs are within the active region of sigmoid
function. The MIWI method makes the initial weights close to the global optimal point with a higher
probability and avoids premature saturation. The efficiency of the MIWI method is evaluated based on
several benchmark problems. The experimental results show that the stability and accuracy of the
proposed method are better than some other weight initialization methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Neural network can be considered as a nonlinear system and
the training process can be seen as a nonlinear optimization pro-
cess [1,2]. Due to the fact that the optimal weights are difficult to
be found with analytical methods, iterative local or global opti-
mization methods are necessary [3]. The gradient-based (GB)
training algorithms are widely used due to its effectiveness [3].
However, GB methods have slow convergence rate and are often
hampered by the occurrence of local minima [4]. It has been
demonstrated that the performance (convergence rate and train-
ing accuracy) of sigmoidal feedforward neural network (SFNN)
trained with GB algorithms depends on several factors, including
training algorithm, initial conditions, training data and network
structure [5–8]. Use of appropriate weight initialization can
shorten the training time and avoid the local minima caused by
random initial weights [9–22].

Many methods have been developed to choose the suitable
initial weights of SFNN. Generally speaking, they can be classified
into two categories, namely, least squares (LS) methods and
interval analysis (IA) methods. The LS methods calculate accurate
initial weights to diminish the initial error, which has been

employed in many literatures. Yam [9] proposed a weight initi-
alization algorithm based on a linear algebraic, and the optimal
initial weights of each layer are evaluated by LS method. Erdogmus
[10] proposed a backpropagation of the desired response algo-
rithm that approximates the nonlinear least squares problem with
linear least squares. Erdogmus [3] improved the optimization
accuracy by further considering the local scaling effects of the
nonlinearities. Liu [11] used the partial LS algorithm to set the
initial weights and the optimal number of hidden neurons
simultaneously. Timotheou [1] approximated the nonlinear equa-
tions of the network to obtain linear equations with nonnegativity
constraints, and then developed a projected gradient algorithm to
solve the formulated linear nonnegative LS problem. These algo-
rithms can diminish the initial error effectively, but cannot avoid
local minima and the performances of those methods are unstable.

The IA methods determine optimal range for the initial weights
and biases to ensure the hidden neurons be active or avoid pre-
mature saturation. The optimal range is investigated from different
aspects. Drago [20] obtained the maximum magnitude of the
weights based on statistical analysis to improve the convergence
speed. Thimm [15] designed many experiments to determine the
optimal range for the initial weights and biases of high-order net-
works. Yam [18] determined the initial weights based on the Cau-
chy's inequality and proposed a linear algebraic method to guarantee
the outputs of the neurons within the active region. In subsequent
research, Yam [19] proposed a method based on multidimensional
geometry, which ensured the activation function be fully utilized.
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Yang [22] proposed a weight initialization method based on the
theory that the range of the initial values should be greater than the
adjustment quantities. Adam [21] proposed a linear interval toler-
ance approach to guarantee the input of each hidden neuron be in
the active region of sigmoid function. Talaska [17] proposed an
initialization mechanism based on a Convex Combination method
that is easy to be realized in transistor. Although the convergence
rate with these methods can be accelerated, the performance is
unstable and cannot avoid local minima.

In order to solve the stability problem, we propose a Mutual
Information based weight initialization (MIWI) method in this
paper, which takes advantage of mutual information (MI) in eva-
luation of information between variables. MI has been demon-
strated to be effective in neuron network to measure the inter-
relation of two neurons. For example, Qiao [23] added or removed
hidden neurons of RBF neural network based on the MI between
hidden neurons and output neurons. Zhang [24] proposed an
adaptive merging and splitting algorithm for feedforward neural
networks based on MI. Peng [25] proposed the minimal-
redundancy-maximal-relevance criterion based on MI to select
optimal hidden neurons. Puma-Villanueva [44] proposed a con-
structive algorithm for feedforward neural network based on MI.
Chen [26] proposed a clustering algorithm based on partial mutual
information (PMI) to implement clustering neurons. Besides some
other researchers [27–29] also applied PMI to selecting input
variables of artificial neural network.

In this paper, the MIWI algorithm adopts the MI between input
variables and output variables to measure the useful information
contained in input variables (the neurons with high MI contain
more useful information). The MIWI is mainly based on three
theorems that have been verified:

(1) If the initial weights are close to the global optimum, any
descent algorithm can train the weights toward the optimum
reliably [3];

(2) The network with optimal weights can fully reflect the rela-
tionship between the input variables and output variables
[17];

(3) Restrain the range of initial weights reasonably can shorten
the training time dramatically [16,21].

The MIWI algorithm has several advantages as follows: Firstly,
MI is calculated between each input variable and output variable.
Input variable with high MI means the information contained is
more important. Since the sigmoid function is a monotone
increasing function, the initial weights between input neurons and

hidden neurons are positively related to the mutual information of
the input neuron they connected. Thus the initial distribution of
the weights is consistent with the information distribution in the
input variables. To ensure the diversity of hidden neurons, the
biases of hidden neurons are distributed in the value space uni-
formly and randomly. Thus the initial weights have higher prob-
ability to get close to the optimal point and the performance can
be more stable than by random initialization.

Secondly, based on the distribution of the initial weights, the
lower and the upper bounds of the initial weights are calculated to
guarantee all the hidden neurons are active in the initial phase.
Then the convergence rate can be guaranteed and the premature
saturation can be avoided.

This paper is arranged as follows. The basic conceptions are
introduced in Section 2. The MIWI algorithm is described parti-
cularly in Section 3. The experimental results and the performance
comparison between MIWI and other weight initialization meth-
ods are presented in Section 4. A discussion of the merits of the
proposed MIWI algorithm is given in Section 5. The conclusion is
presented in Section 6. For convenience of discussion, the acro-
nyms used in this paper are listed in Table 1.

2. Basic conceptions

In this section, we briefly introduce SFNN and MI.

2.1. Sigmoidal feedforward neural networks (SFNN)

The SFNN is a kind of multilayer perceptions (MLPs) that
applies sigmoidal activation functions in hidden neurons. Due to
the MLPs with one hidden layer can approximate any continuous
function [30,31], we mainly research the one-hidden-layer SFNN.
The structure of a one-hidden-layer SFNN is shown in Fig. 1.

In this paper, let n0,n1, andn2denote the number of neurons in
the input layer, the hidden layer and the output layer respectively.
The input and output of the three layers are z 0ð Þ; y 0ð Þ� �

, z 1ð Þ; y 1ð Þ� �
and z 2ð Þ; y 2ð Þ� �

, respectively. Assume the input vector is
X ¼ x1; x2;…; xn0

� �
, then the output of the ith input neuron can be

expressed as

y 0ð Þ
i ¼ xi; i¼ 1;2;…;n0ð Þ ð1Þ
In hidden layer, each neuron is connected to all the input

neurons. The input and output of the jth hidden neuron are

z 1ð Þ
j ¼

Xn0
i ¼ 1

w 1ð Þ
ij y 0ð Þ

i þb 1ð Þ
j ; j¼ 1;2;…;n1ð Þ ð2Þ

y 1ð Þ
j ¼ f 1ð Þ z 1ð Þ

j

� �
¼ 1þexp �z 1ð Þ

j

� �� ��1
ð3Þ

Table 1
Lists of acronyms.

Acronym Description

SFNN Sigmoidal feedforward neural network
BP Backpropagation
GB Gradient-based
MIWI Mutual Information based weight initialization
MI Mutual information
LS Least squares
IA Interval analysis
PMI Partial mutual information
MLPs Multilayer perceptions
SCBP Split-complex backpropagation algorithm
ETP Effluent total phosphorus
T Temperature
ORP Oxidation reduction potential
DO Dissolved oxygen concentration
TSS Total soluble solid
pH Potential of hydrogen
ITP Influent total phosphorus
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Fig. 1. The one-hidden-layer SFNN structure.
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