
Exponential synchronization of discrete-time mixed delay neural
networks with actuator constraints and stochastic missing data$

Jian-Ning Li a, Wen-Dong Bao a, Shi-Bao Li a, Cheng-Lin Wen a, Lin-Sheng Li b,n

a Institute of System Science and Control Engineering, School of Automation, Hangzhou Dianzi University, Hangzhou 310018, PR China
b Taiyuan University of Science and Technology, Taiyuan 030024, PR China

a r t i c l e i n f o

Article history:
Received 18 September 2015
Received in revised form
13 May 2016
Accepted 24 May 2016
Communicated by Guang Wu Zheng
Available online 6 June 2016

Keywords:
Neural networks
Mixed delay
Actuator constraints
Missing data
Synchronization

a b s t r a c t

This paper investigates the problem of exponential synchronization of discrete-time neural networks
with mixed time delays, actuator saturation and failures. Meanwhile, the unreliable communication links
are considered between the neural networks, and such unreliable links are modeled as stochastic missing
data satisfying Bernoulli distributions. In order to show the relationships between actuator constraints,
unreliable communication link and mixed delay neural networks, by using Lyapunov functional ap-
proach, a missing data probability dependent exponential synchronization criterion is given. Then, based
on such criterion, a reliable controller is designed to ensure that the neural networks are exponentially
synchronized in the mean square. Finally, a numerical example is provided to illustrate the effectiveness
of the proposed approach.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

During the past few decades, neural networks have been ex-
tensively investigated due to the fact that the neural networks
have wide application in a variety of fields, such as signal pro-
cessing, static image processing, pattern recognition, combinator-
ial optimization and associative memory, see [1–5,10,22] and the
references therein. Recently, the time-varying delays that exist
between neurons have paid attentions because they are often the
sources to cause poor performance and instability of neural net-
works [6,26]. With further development, another kind of time-
delay also attracted considerable interest, namely distributed
delay [11,21], and several interesting research results for systems
with mixed time delays have been provided, in [7], for neutral
system with mixed time-delays and sector-bounded nonlinearity,
the stability problem was proposed and the research for stochastic
neural system with Markovian jump parameters and mixed delays
was given in [8,12]. A sufficient condition has been derived in [18]
to ensure the exponential stability in mean square for stochastic
neural networks.

On the other hand, the research on synchronization problem
for delayed neural networks has been shown to have an important
impact on the fundamental science [9,25], such as chemistry,
nonlinear oscillation synchronization, secret communication and
cryptography and so on [20]. For instance, the problem of adaptive
synchronization was investigated in [23] for stochastic neural
networks by using the M-matrix approach. In [24], the synchro-
nization problem was investigated for a new class of continuous-
time neural networks, and in such systems, all discrete, distributed
and the neural delays are mode dependent. However, in the
presence of actuator constrains and stochastic data missing, the
delay-dependent synchronization problem for discrete-time
mixed-delay neural networks has not been fully investigated. The
actuator constraints, such as actuator faults and actuator satura-
tion, often appear in a variety of practice, and the synchronization
problem is much more complicated. Therefore, the main purpose
of this paper is to deal with the synchronization problem of
mixed-delay neural networks with actuator constraints and sto-
chastic data missing.

In this article, we will investigate the synchronization problem
of discrete-time mixed delay neural networks with actuator faults,
actuator saturation and stochastic missing data. The missing data
is modeled as a stochastic process satisfying Bernounlli distribu-
tion. Considering the characteristic of mixed delay, missing data
and actuator constraints, a series of Lyapunov functions are con-
structed, then, a sufficient condition is given to design a feedback
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controller to ensure exponential synchronization in mean square
for neural networks . Finally, a numerical example is shown to
illustrate the effectiveness of the proposed method. The main
contributions of this paper can be summarized as follows: (1) the
error dynamic system is modeled to show the relationships be-
tween actuator failures, actuator saturation, mixed time delay and
stochastic missing data. (2) A missing data probability dependent
exponential synchronization criterion is given for the delayed
system subject to actuator constrains and stochastic missing data.
(3) The obtained results are extended to uncertain neural net-
works with actuator constrains and missing data.

Notation: Throughout the paper, n and  ×n m denote the
n-dimensional Euclidean space and the set of all ×n m real ma-
trices, respectively. The notation ≥X Y (or >X Y ) means that X
and Y are symmetric matrices and −X Y is positive semi-definite
(or positive definite). The superscript “T” denotes the matrix
transposition. ∥·∥ is the Euclidean norm in n.

2. Model formulation and preliminaries

Consider the following discrete-time neural network with
mixed delays, and it is denoted as the master system, such system
can be described as
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where ⎡⎣ ⎤⎦( ) = ( ) ( ) … ( ) ∈x k x k x k x k, , , n
n

1 2 is the neural state vec-
tor, ( ) = …x k i n, 1, 2, ,i , means the state of the ith neuron at time k.

= { … }A diag a a a, , , n1 2 is the state feedback coefficient matrix and
satisfying ∥ ∥ <a 1i . ∈B B, n

1 2 are connection weight matrices
and ∈D n is the system coefficient matrix, respectively. ( ( ))g x k is
the neuron activation function and α ( ( ))x k is the nonlinear func-
tion, ⎡⎣ ⎤⎦( ( )) = ( ( )) ( ( )) … ( ( ))g x k g x k g x k g x k, , , n n1 1 2 2 , α ( ( ))=x k
⎡⎣ ⎤⎦α α α( ( )) ( ( )) … ( ( ))x k x k x k, , , n n1 1 2 2 , ϕ ( )k1 is the initial state of the
master system. Moreover, τ ( )k denotes the discrete time-varying
delay, and satisfying τ τ τ≤ ( ) ≤km M , where τm and τM are the
maximum and the minimum allowed delay constant bound, re-
spectively. μm is a kind of nonnegative constant and the con-
vergent conditions are satisfied as [11]:
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Throughout the whole paper, we make the following assumptions:

Assumption 1. Given any ∈ ( ≠ ) ∈ { … }x y x y i n, , 1, 2, , , the ac-
tivation function ( ( ))g x k and nonlinear function α ( ( ))x k is con-
tinuous and bounded, and there exist constants −gi ,
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By considering the master system in (1), the corresponding slave
system can be described as the following equation:

⎧

⎨
⎪⎪

⎩
⎪⎪

∑

τ

μ α σ

ϕ τ τ τ

( + ) = ( ) + ( ( )) + ( ( − ( )))

+ ( ( − )) + ( ( ))

( ) = ( ) = − − + … − ( )

=

+∞

Slave

y k Ay k B g y k B g y k k

C y k m u k

y k k k

:

1

, , 1, , 3

m
m

F

M M m

0 1

1

2

where A, B0, B1 and C are matrices illustrated in (1), σ ( ( ))u kF is the
control input under the actuator constraints. Generally speaking,
σ (·) denotes the actuator saturation, and described as
σ ( ) = ( ) { ∥ ∥}r sign r r rmin ,i i i i max i, , where ri max, denotes the ith ele-
ment of the vector rmax, the saturation level. As [14], if there exist
diagonal matrices R1 and R2, such that ≤ < ≤R I R0 1 2, then the
saturation function σ ( ( ))u kF can be rewritten as:

σ Ψ( ( )) = ( ) + ( ( )) ( )u k R u k u k 4F F F
1

Eq. (4) can be divided into two parts, one is a linear part ( ( )R u kF
1 ),

and another one is a nonlinear function (Ψ ( ( ))u kF ), assume that
such nonlinear function satisfies the sector bounded condition, as

Ψ Ψ( ( ))( ( ( ) − ( ))) ≤ = − ( )u k u k Ru k R R R0, 5T F F F
2 1

In Eq. (5), ( ) ∈u kF n is the control input subjected to actuator
failures. As references [15,16], the controller ( )u kF can be designed
as ( ) = ( )u k Mu kF , where u(k) is the controller to be designed in
such research and M is the actuator failure matrix and satisfying:
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If =m 1i , this denotes the ith actuator is running without failure,
and =m 0i means the ith actuator is outage. Meanwhile,

< <m0 1i represents that the ith actuator has partial failure. Thus,
the model of the slave system can be reconstructed as:
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with the sector-bounded constraints
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By defining the error signal as ( ) = ( ) − ( )e k y k x k , the error dy-
namic system can be obtained as follows:
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where ( ( )) = ( ( )) − ( ( ))f e k g y k g x k , β α α( ( )) = ( ( )) − ( ( ))e k y k x k .
Based on Assumption 1, it can be found that
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where ν ∈ , and ν ≠ 0. In practical, the unreliable communication
links exist in the considered system, thus, random data loss may
exist, and we use a stochastic variable θ ( )k to describe the data
loss phenomena at time k, thus the controller is designed as

θ( ) = ( ) ( ) ( )u k k Ke k 11

where ∈ ×K n n is the designed controller gain matrix, and assume
that θ ( )k satisfies the Bernounlli distribution as [13], θ ( ) =k 1when
the controller data is received, whereas θ ( ) =k 0 denotes the data
is missing. However, in Eq. (9), M is not known in advance, thus,
we have defined = ( + ) ∥ ∥ ≤ ≤M M I G G H I,0 as [15], where
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