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a b s t r a c t 

In constrained optimisation, the augmented Lagrangian method is considered as one of the 

most effective and efficient methods. This paper studies the behaviour of augmented La- 

grangian function (ALF) in the solution space and then proposes an improved augmented 

Lagrangian method. We have shown that our proposed method can overcome some of the 

drawbacks of the conventional augmented Lagrangian method. With the improved aug- 

mented Lagrangian approach, this paper then proposes a cooperative coevolutionary dif- 

ferential evolution algorithm for solving constrained optimisation problems. The proposed 

algorithm is evaluated on a set of 24 well-known benchmark functions and five practi- 

cal engineering problems. Experimental results demonstrate that the proposed algorithm 

outperforms the state-of-the-art algorithms with respect to solution quality as well as ef- 

ficiency. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

Most of the science and engineering optimisation problems in real world are highly constrained. These constrained op- 

timisation problems present serious challenges to existing optimisation methods. Developing effective constraint handling 

techniques is critical in addressing these challenges. Constraint handling techniques can be categorised into four groups 

[26] : maintaining feasibility of solutions, penalty functions, distinguishing between feasible and infeasible solutions and hy- 

brid methods. Other categorisations are also possible [8] . Generally speaking, each of these techniques has some advantages 

and disadvantages. 

Evolutionary algorithms (EAs) have been applied to various optimisation problems which classical optimisation algo- 

rithms cannot be directly applied to or do not provide promising results [40] . One of the most common constraint handling 

techniques with EA is the penalty function approach, as presented by Courant et al. [10] . The penalty function approach 

converts a constrained optimisation problem into a sequence of unconstrained problems by adding a penalty term to the 

original objective function to penalise infeasible solutions [28] . However penalty functions are often not differentiable and 

this is the main drawback of using this approach. Another popular approach is the Lagrangian multiplier method, which 

is based on Kuhn-Tucker conditions and can be used to convert a constrained optimisation problem into an unconstrained 
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one. However, this approach assumes the problem to be convex. In order to handle non-convex problems, the augmented 

Lagrangian method is introduced in [38] , to convexify the objective function by adding quadratic penalty terms [44] . 

Many studies have been carried out during the last decade to solve constrained optimisation problems using the aug- 

mented Lagrangian approach. Adeli and Cheng [1] proposed a hybrid genetic algorithm (GA) to solve structural optimisation 

using ALF. Sarma and Adeli [42] presented a fuzzy augmented Lagrangian method using GA to optimise steel structures. 

Rocha et al. [37] proposed a stochastic population based algorithm using the augmented Lagrangian method. An artificial 

fish swarm algorithm based hyperbolic augmented Lagrangian method is used to solve constrained optimisation problems 

in [9] . An ant colony optimisation (ACO) algorithm with augmented Lagrangian method is presented in [21] to solve con- 

tinuous global optimisation problems. Mallipeddi and Suganthan [22] presented an ensemble of four different constraint 

handling methods to solve constrained optimisation problems. 

Dealing with complex combinatorial solution spaces as well as problems with high number of constraints is a challeng- 

ing task. Some attempts have been made to hybridise the EAs with local search algorithms to cope with this challenge in 

an efficient way [40] e.g., a hybrid particle swarm optimisation(PSO) with GA [14] . Another approach to deal with the afore- 

mentioned challenge is using a coevolutionary algorithm. Tahk and Sun [44] presented a coevolutionary algorithm using 

zero-sum game to coevolve the decision variables and Lagrangian multipliers. A coevolutionary GA has been also used to 

solve constrained optimisation problems [3] . Krohling et al. [19] used a coevolutionary PSO augmented Lagrangian function 

to deal with constraints. They proposed a Gaussian probability distribution for the acceleration coefficient in PSO. Nema 

et al. [29] presented a hybrid coevolutionary algorithm with the min-max approach to solve constrained optimisation prob- 

lems. They also used an augmented Lagrangian method to handle constraints. 

Although ALF is an efficient method to deal with constraints, it changes the fitness values dramatically for solutions 

lying far from the boundaries of the feasible space. In this paper, we propose an improved augmented Lagrangian function 

(iALF) to handle this issue in a more effective manner. Based on iALF, we also propose an efficient CCiALF method for 

solving constrained optimisation problems. The proposed algorithm produces higher quality solutions using fewer number 

of function evaluations (NFE). To demonstrate the capability of CCiALF algorithm, two sets of benchmarks are used in our 

study and the results are compared with that of the state-of-the-art algorithms. 

The rest of the paper is structured as follows: First some background on ALF is described in Section 2 , and then our 

improved ALF (iALF) is presented in section 3 . The proposed CCiALF method is introduced in Section 4 and experimental 

results are presented in Section 5 . Finally, Section 6 provides conclusion and future research directions. 

2. Augmented Lagrangian function 

The general constrained optimisation problem can be described as follows: 

min 

x 
f ( x ) , x ∈ R 

p (1) 

g i ( x ) ≥ 0 , i = 1 , . . . , m (2) 

h j ( x ) = 0 , j = 1 , . . . , n (3) 

lb k ≤ x k ≤ ub k , k = 1 , . . . , p (4) 

where Eq. (1) represents the objective function, Eqs. (2) and (3) are inequality and equality constraints, respectively. 

Eq. (4) represents lower and upper bounds on decision variables x . In [16] and [31] , only the equality constraints are consid- 

ered and the above problem is transformed into an unconstrained one by adding quadratic penalty terms and dual values to 

the objective function. Rockafellar [39] utilised the idea and modified it for inequality constraints. The augmented Lagrangian 

(also called as penalty Lagrangian by Rockafellar [38] ) replacing the quadratic penalty term by θ function is presented as 

follows [13] : 

F ( x , μ, τ) = f ( x ) + R 

m ∑ 

j=1 

[(θ (g j ( x ) + μ j )) 
2 − (μ j ) 

2 ] + R 

n ∑ 

k =1 

[(h k ( x ) + τk ) 
2 − (τk ) 

2 ] (5) 

θ (G ) = min { 0 , G } (6) 

where R is a positive penalty parameter, μ is a 1 × m multiplier, τ is a 1 × n multiplier for inequality and equality con- 

straints respectively, and G can be any function or value. The θ function checks if the inner expression (e.g. G ) is greater 

than zero or not. If G ≥ 0 then θ (G ) = 0 , otherwise θ (G ) = G . 

Deb and Srivastava [13] evaluated the classical ALF using benchmark functions and it is shown that the classical ALF has 

limited success, e.g., the solutions are still far from the known optima. Fig. 1 shows an example of a 2-dimensional problem 

where ALF divides the search space into four different regions: the inner feasible region, ie., the inner feasible area far from 

the boundary (region 1), the feasible area close to the boundary (region 2), the feasible area on the boundary(region 3) and 

finally the infeasible area (region 4). 
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