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a b s t r a c t 

The D iscounted {0-1} K napsack P roblem (D{0-1}KP) is an extension of the classical 0-1 

knapsack problem (0-1 KP) that consists of selecting a set of item groups where each group 

includes three items and at most one of the three items can be selected. The D{0-1}KP is 

more challenging than the 0-1 KP because four choices of items in an item group diversify 

the selection of the items. In this paper, we systematically studied the exact and approxi- 

mate algorithms for solving D{0-1}KP. Firstly, a new exact algorithm based on the dynamic 

programming and its corresponding fully polynomial time approximation scheme were 

designed. Secondly, a 2-approximation algorithm for D{0-1}KP was developed. Thirdly, a 

greedy repair algorithm for handling the infeasible solutions of D{0-1}KP was proposed 

and we further studied how to use binary particle swarm optimization and greedy re- 

pair algorithm to solve the D{0-1}KP. Finally, we used four different kinds of instances to 

compare the approximate rate and solving time of the exact and approximate algorithms. 

The experimental results and theoretical analysis showed that the approximate algorithms 

worked well for D{0-1}KP instances with large value, weight, and size coefficients, while 

the exact algorithm was good at solving D{0-1}KP instances with small value, weight, and 

size coefficients. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

K napsack P roblem (KP) [1,6,10] is a classical NP-hard problem in computer science, which has found many applications 

in various areas, such as business management, computational complexity, cryptology, and applied mathematics, and so 

on. KP has some extended versions, e.g., the unbounded KP, multiple-choice KP, and quadratic KP, etc. These KP variants 

[22,27,29,30,33] have been well studied and successfully solved with different techniques and methods in the past few 

decades. 

D iscounted {0-1} K napsack P roblem (D{0-1}KP) a latest variant of classical 0-1 KP, which was firstly proposed by Guldan 

[12] in 2007 and used the concept of discount to reflect the sales promotion in real business activities. D{0-1}KP is a 0-1 

integer programming problem with n + 1 inequality constraints including the discount constraints and knapsack capacity 

constraints, while there is only one inequality constraint in the classical 0-1 KP, where n is the number of item groups. Due 

to the better expressive capability to real business sales, D{0-1}KP has obtained a large number of applications in investment 
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decision and resource allocation. However, the algorithmic study on how to solve D{0-1}KP in a more effective way is rare. 

In [12] , Guldan presented an exact algorithm to solve D{0-1}KP based on dynamic programming [3] and discussed how to 

use the heuristic algorithm to solve D{0-1}KP. Rong et al. [32] in 2012 solved D{0-1}KP by combining the special kernel of 

D{0-1}KP with exact algorithm proposed in [12] . Currently, the study on how to solve D{0-1}KP mainly focuses on the exact 

algorithm. As far as we know, there is no work which uses the approximate and evolutionary algorithms to solve D{0-1}KP. 

Motivated by designing the high-performance and low-complexity algorithms for solving D{0-1}KP, we systematically 

studied the exact and approximate algorithms for D{0-1}KP in this article. The main contributions of this article included the 

following four aspects: (1) proposing a N ew E xact algorithm for D{0-1}KP (NE-DKP) with lower complexity than algorithm 

studied in [12] when the sum of value coefficients is less than knapsack capacity; (2) developing a fully Poly nomial-time 

approximate scheme (Poly-DKP) to simplify the aforementioned exact algorithm NE-DKP; (3) presenting a 2 - App roximation 

algorithm (App-2-DKP ) for D{0-1}KP based on greedy strategy; and (4) providing a P article S warm O ptimization based 

G reedy R epair algorithm for D{0-1}KP (PSO-GRDKP). On four kinds of well-known instances from real applications, we tested 

the practical performances of proposed exact/approximate algorithms and analyzed their computation complexities and ap- 

proximation rates. The experimental results and theoretical analysis showed that the approximate algorithms, i.e., Poly-DKP, 

App-2-DKP , and PSO-GRDKP, work well for the large scale D{0-1}KPs, while the exact algorithm, i.e., NE-DKP, is good at 

solving the small scale D{0-1}KPs. 

The remainder of this article is organized as follows. In Section 2 , we provide a preliminary of D{0-1}KP. In Section 3 , we 

describe the new exact algorithm for D{0-1}KP. Sections 4 depicts three approximate algorithms for D{0-1}KP, respectively. 

In Section 5 , we report experimental comparisons that demonstrate the feasibility and effectiveness of proposed exact and 

approximate algorithms. Finally, we give our conclusions and suggestions for further research in Section 6 . 

2. Preliminary 

In this section, the definition, mathematical model, and existing exact algorithm of discounted {0-1} knapsack problem 

(D{0-1}KP) are described. 

Definition 1 ((Discounted {0-1} knapsack problem) [12,32] ) . Given n item groups having 3 items and one knapsack with 

capacity C , where the items in the i -th ( i = 0 , 1 , · · · , n − 1 ) item group are denoted as 3 i , 3 i + 1 , and 3 i + 2 . The value coef- 

ficients of 3 i , 3 i + 1 , and 3 i + 2 are p 3 i , p 3 i +1 , and p 3 i +2 = p 3 i + p 3 i +1 , respectively. The weight coefficients of 3 i , 3 i + 1 , and 

3 i + 2 are w 3 i , w 3 i +1 , and w 3 i +2 , where w 3 i +2 is the discounted weight, w 3 i + w 3 i +1 > w 3 i +2 , w 3 i +2 > w 3 i , and w 3 i +2 > w 3 i +1 . 

D{0-1}KP is to maximize the total value of items which can be put into the knapsack, where at most one item is selected 

from each item group and the sum of weight coefficients is less than knapsack capacity C . 

Without loss of generality, we assume that the value coefficient p k , weight coefficient w k ( k = 0 , 1 , · · · , 3 n − 1 ), and knap- 

sack capacity C are the positive integers, and w 3 i +2 ≤ C ( i = 0 , 1 , · · · , n − 1 ), 
∑ n −1 

i =0 w 3 i +2 > C, then the mathematical model 

of D{0-1}KP is defined as [12] : 

max 

n −1 ∑ 

i =0 

( x 3 i p 3 i + x 3 i +1 p 3 i +1 + x 3 i +2 p 3 i +2 ) (1) 

s . t . x 3 i + x 3 i +1 + x 3 i +2 ≤ 1 , i = 0 , 1 , · · · , n − 1 , (2) 

n −1 ∑ 

i =0 

( x 3 i w 3 i + x 3 i +1 w 3 i +1 + x 3 i +2 w 3 i +2 ) ≤ C, (3) 

x 3 i , x 3 i +1 , x 3 i +2 ∈ { 0 , 1 } , i = 0 , 1 , · · · , n − 1 , (4) 

where, x 3 i , x 3 i +1 , and x 3 i +2 represent whether the items 3 i , 3 i + 1 , and 3 i + 2 are put into the knapsack: x k = 0 indicates the 

item k ( k = 0 , 1 , · · · , 3 n − 1 ) is not in knapsack, while x k = 1 indicates the item k is in knapsack. It is worth noting that a 

binary vector X = ( x 0 , x 1 , · · · , x 3 n −1 ) ∈ { 0 , 1 } 3 n is a potential solution of D{0-1}KP. Only if X meets both Eqs. (2) and (3) , it is 

a feasible solution of D{0-1}KP. 

D{0-1}KP obviously has the properties of optimal substructure and overlapping subproblem, thus the dynamic program- 

ming is an appropriate method to solve D{0-1}KP. Guldan in [12] provided the first dynamic programming based exact 

algorithm to solve D{0-1}KP. In order to distinguish Guldan’s exact algorithm with our new exact algorithm, we abbreviate 

it as OE-DKP ( O ld E xact algorithm for D{0-1}KP). The recursion formula and computational complexity analysis of OE-DKP 

are as follows. 

Let P = { p k | k = 0 , 1 , · · · , 3 n − 1 } and W = { w k | k = 0 , 1 , · · · , 3 n − 1 } be the value set and weight set, respectively. For each 

item group i ′ ∈ {0, 1, ���, i }, at most one item is selected to put into knapsack. For all items in knapsack, G [ i , j ] is the 
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