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a b s t r a c t

Structured sparse PCA (SSPCA) is a new emerging method regularized by structured sparsity-inducing
norms. However, these regularization terms are not necessarily optimal because of the noisy and irre-
levant features embedded in predefined patterns. This paper presents a method called Schatten p-norm
based principal component analysis (SpPCA) to learn interpretable and structured elements (or factors).
In SpPCA, a low-rank assumption is used to characterize structured elements in a two-dimensional
matrix form. Compared to SSPCA, the low-rank assumption of SpPCA is more intuitive and effective for
describing object parts of an image. Moreover, SpPCA can deal with some scenarios, where the dictionary
element matrixes have complex structures. We also propose an efficient and simple optimization pro-
cedure to solve the problem. Extensive experiments on denoising of sparse structured signals and face
recognition on different databases (e.g. AR, Extend Yale B and Multi-PIE) demonstrate the superior
performance over some recently proposed methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Principal component analysis (PCA) [1] is a classical technique
widely used in feature extraction and unsupervised dimension-
ality reduction. It aims to find an orthogonal transformation to
convert a set of correlated variables into uncorrelated ones. In the
last decade, several alternatives to PCA have been proposed, no-
tably independent component analysis (ICA) [2] and non-negative
matrix factorization (NMF) [3].

Since each principal component in PCA is a linear combination
of all the original variables, it is often difficult to interpret the
results. For solving this problem, Zou et al. [4] proposed sparse
PCA (SPCA) using the lasso (elastic net) to produce modified
principal component. Christophe et al. [5] proposed robust SPCA
to make the analysis resistant to outlying observations. However,
these methods seem inappropriate in many applications because
they only constrain the size or the sparsity of the principal factors
without considering the important structures. For example, the
pixels of an image, the common most data in compute vision, are
naturally organized on a grid. The structural information in the
image is very helpful. Meanwhile, the supports of factors ex-
plaining the variability of images can be expected to be localized
or connected, such as eyes or mouth in face images. These
structured relationships among variables can help us better

interpret data and provide new insights into the underlying
processes. Some works have been reported in the context of re-
gression and classification [6,7], occlusion pattern learning [8],
and back ground subtraction [9] by exploiting such structure.
Particularly, Jenatton et al. [10] proposed structured sparse PCA
(SSPCA) to yield a structured and sparse formulation of principal
component analysis by adding sparse and some prior structural
constraints in elements. Nonetheless, the convex structured
sparsity constraints in [10] may not necessarily consist in real-
world applications. In order to capture more flexible and general
structure, Ren et al. [11] introduced binary matrices as auxiliary
variables and proposed Markov Random Field (MRF) based SSPCA
(MS2PCA) for gene interaction. It is worth noting that the meth-
ods mentioned above worked off-line. Then Zoltan et al. [12]
proposed online group-structured dictionary learning (OSDL) to
fit large or slowly varying systems. Although these methods
could achieve structured local factors, the structures of factors
need to be pre-given in advance, which is likely to be not ade-
quate and accurate in many practical applications because of the
noisy and irrelevant features.

Recently, low-rank hypothesis has become an effective techni-
que in depicting the structure in data. For instance, Wright et al.
established a robust principal component analysis (RPCA) [13]
method, which assumes that the error matrix is sparse and the
clean data matrix is low rank. As an important extension of RPCA,
the low-rank representation (LRR) [14] was presented to recover
the subspace structures among data samples. Given a data matrix,
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LRR seeks the lowest-rank representation among all the candi-
dates that can represent the data samples as linear combinations
of the bases in a given dictionary. Unlike RPCA and LRR, Zhang
et al. [15] focused on dealing with image data which were cor-
rupted by continuous occlusion, and proposed double nuclear
norm-based matrix decomposition (DNMD) to recover the low-
rank data in image vector space and remove the low rank error in
the image (matrix) space simultaneously. To make full use of the
low-rank structural information of error image, Yang et al. [16]
proposed a two-dimensional image matrix based matrix regres-
sion model, named nuclear norm based matrix regression (NMR),
to carry out the image representation and classification. To handle
face images with mixed noise, i.e., the structural noise plus the
sparse noise, Luo et al. [17] proposed nuclear-L1 norm joint matrix
regression (NL1R) model for face recognition with mixed noise,
which are derived by using MAP (maximum a posteriori prob-
ability) estimation. All these methods use rank function to char-
acterize the structural information in data. Additionally, to facil-
itate the computation, they replace the rank function with the
nuclear norm. And the experimental results show that nuclear
norm based models indeed obtain the effective low rank solutions
in a variety of scenarios.

In this paper, we aim to learn the interpretable structural ele-
ments (e.g., mouth, eyes, or forehead in face images), which gen-
erally lead to a low-rank image in contrast to the full-rank original
image. In [10–12], using the pre-defined structural constraints in
factors is away from the actual situation and cannot depict com-
plex structural information. Here we use nuclear norm to capture
the structures in data. Good performance has been reported in
[14–16] by using nuclear norm to depict low-rank structures. As
we know, the nuclear norm of a matrix is equal to the L1 norm of a
vector formed by the singular values of the same matrix. Inspired
by the experimental observations and theoretical guarantees
showing superiority of Lp quasi-norm minimization to L1 mini-
mization in compressive sampling (CS) [18], some approaches in
[19,20] replace the rank function with the Schatten-p quasi-norm
and verify that Schatten-p quasi-norm minimization is superior to
nuclear norm minimization. Specially, Nie et al. [21] proposed to
jointly use Schatten p-norm and Lp-norm to approximate the rank
minimization problem and enhance the robustness to outliers, and
achieved promising performance on collaborative filtering and
social network link prediction. This paper presents a Schatten p-
norm based principal component analysis method to perform the
image denoising and classification. Instead of pre-defining certain
structures in the elements, the proposed model processes the
elements in a two-dimensional matrix form and learns the
structures effectively by using low-rank constraint. Compared
with SSPCA, the pre-given structures are not required and more
discriminative and complex structural variables can be captured.
Alternating direction method of multipliers (ADMM) is utilized to
solve the proposed model. We perform experiments on the de-
noising of sparse structured synthetic signals and face recognition
on the AR [22], Extend Yale B [23] and MultiPIE [24] databases. The
experimental results clearly demonstrate that the proposed
method is more effective than state-of-the-art methods for image
denoising and face recognition.

The rest of this paper is organized as follows. Section 2 presents
the proposed SpPCA model and the optimization of SpPCA. Section
3 conducts the experiments on denoising and faces recognition,
and Section 4 concludes the paper.

Notations: The extended Schatten p-norm ( < < ∞)p0 of a ma-
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Remark 1. When <p 1, the extended Schatten p-norm is only a
quasi-norm. But for convenience, we still call it Schatten p-norm.

2. The proposed model

In this section, we first propose Schatten p-norm based prin-
cipal component analysis (SpPCA, for short) model by using
Schatten p-norm to constrain each element of the dictionary, and
then apply ADMM to solve SpPCA. Finally, we analyze the com-
plexity and convergence of the proposed algorithm.

2.1. Schatten p-norm based principal component analysis model

Suppose that we are given a set of samples = [X x x, ,1 2

… ] ∈ ( > )× t nx, n
t n , the dictionary learning problem is to find a

dictionary = [ … ] ∈ ( ⪢ )× t KD d d d, , , K
t K

1 2 and coefficient = [Z z ,1

… ] ∈ ×z z, , n
K n

2 , such that ≈X DZ. The matrix product DZ is
called a decomposition of X. To address this problem, dictionary
learning has been widely investigated during the last decade [25–
28]. It is natural, when learning the dictionary, to penalize or
constrain some norms or quasi-norms on D and Z, respectively, to
encode prior information about the decomposition of X. Dic-
tionary learning (also called matrix decomposition [29]) is a gen-
eral problem that contains, e.g., PCA, ICA, NMF, among many
others. In particular, Jenatton et al. [10] casted SSPCA problem in
the dictionary learning framework and considered some structural
constraints to control the structure of the supports of dictionary
elements. Zoltan et al. [12] extended SSPCA and proposed online
group-structured dictionary learning, which not only was online,
but also could represent general overlapping group structures and
deal with missing information at a time.

Although the above approaches integrate the idea of structured
sparsity into modeling, which use the mixed ( )L L,1 2 norm to at-
tempt to characterize the structure information of the overall
dictionary D, it actually destroys global structure of each element.
As we know, for a face image which is spatially continuous, the
global structure information is extremely significant for recogni-
tion task [15,16], thus, it should not be ignored. To emphasize this
information, we do not stretch each element into a vector form,
but use low rank constraint to characterize each element and
preserve its spatial structure, which induces a low rank principal
component analysis model:
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where λ ≥ 0 is a regularization parameter, Ψ ( )d converts a vector
∈d t to a matrix in ×l m (suppose that the input image size is

×l m and = ×t l m), Zi is the ith row of Z to avoid trivial solutions.1

It is well-known that the rank minimization problem is dif-
ficult to solve since it is NP-hard. Recently, some scholars re-
place rank function using its convex envelope: nuclear norm
[30]. However, the nuclear norm relaxation may deviate the
solution away from the real solution of original rank mini-
mization problem. As we know, when →p 0, the Schatten

1 For example, if using the nuclear norm or schatten p-norm to approximate
rank function in Eq. (1), the objective can be decreased by respectively dividing and

multiplying di and Zi by a constant factor.
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