
Persisting big-data: The NoSQL landscape

Alejandro Corbellini n, Cristian Mateos, Alejandro Zunino, Daniela Godoy,
Silvia Schiaffino
ISISTAN (CONICET-UNCPBA) Research Institute1, UNICEN University, Campus Universitario, Tandil B7001BBO, Argentina

a r t i c l e i n f o

Article history:
Received 11 March 2014
Accepted 21 July 2016
Recommended by: G. Vossen
Available online 30 July 2016

Keywords:
NoSQL databases
Relational databases
Distributed systems
Database persistence
Database distribution
Big data

a b s t r a c t

The growing popularity of massively accessed Web applications that store and analyze
large amounts of data, being Facebook, Twitter and Google Search some prominent
examples of such applications, have posed new requirements that greatly challenge tra-
ditional RDBMS. In response to this reality, a new way of creating and manipulating data
stores, known as NoSQL databases, has arisen. This paper reviews implementations of
NoSQL databases in order to provide an understanding of current tools and their uses.
First, NoSQL databases are compared with traditional RDBMS and important concepts are
explained. Only databases allowing to persist data and distribute them along different
computing nodes are within the scope of this review. Moreover, NoSQL databases are
divided into different types: Key-Value, Wide-Column, Document-oriented and Graph-
oriented. In each case, a comparison of available databases is carried out based on their
most important features.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Relational databases or RDBMSs (Relational Database
Management Systems) have been used since the 1970s
and, as such, they can certainly be considered a mature
technology to store data and their relationships. However,
storage problems in Web-oriented systems pushed the
limits of relational databases, forcing researchers and
companies to investigate non-traditional forms of storing
user data [105]. Today's user data can scale to terabytes per
day and they should be available to millions of users
worldwide under low latency requirements.

The analysis and, in particular, the storage of that
amount of information is challenging. In the context of a
single-node system, increasing the storage capacity of any
computational node means adding more RAM or more
disk space under the constraints of the underlying hard-
ware. Once a node reaches its storage limit, there is no
alternative but to distribute the data among different
nodes. Traditionally, RDBMSs systems were not designed
to be easily distributed, and thus the complexity of adding
new nodes to balance data is high [67]. In addition, data-
base performance often decreases significantly since joins
and transactions are costly in distributed environments
[19,86]. All in all, this does not mean RDBMSs have became
obsolete, but rather they have been designed with other
requirements in mind and work well when extreme scal-
ability is not required.

Precisely, NoSQL databases have arisen as storage
alternatives, not based on relational models, to address the
mentioned problems. The term “NoSQL” was coined by
Carlo Strozzi in 1998 to refer to the open-source database
called NoSQL not having an SQL interface [108]. In 2009,
the term resurfaced thanks to Eric Evans in the context of

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2016.07.009
0306-4379/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author. Fax: þ54 249 4385681.
E-mail addresses: alejandro.corbellini@isistan.unicen.edu.ar

(A. Corbellini), cristian.mateos@isistan.unicen.edu.ar (C. Mateos),
alejandro.zunino@isistan.unicen.edu.ar (A. Zunino),
daniela.godoy@isistan.unicen.edu.ar (D. Godoy),
silvia.schiaffino@isistan.unicen.edu.ar (S. Schiaffino).

1 Also Consejo Nacional de Investigaciones Científicas y Técnicas
(CONICET).

Information Systems 63 (2017) 1–23

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.07.009
http://dx.doi.org/10.1016/j.is.2016.07.009
http://dx.doi.org/10.1016/j.is.2016.07.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.07.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.07.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.07.009&domain=pdf
mailto:alejandro.corbellini@isistan.unicen.edu.ar
mailto:cristian.mateos@isistan.unicen.edu.ar
mailto:alejandro.zunino@isistan.unicen.edu.ar
mailto:daniela.godoy@isistan.unicen.edu.ar
mailto:silvia.schiaffino@isistan.unicen.edu.ar
http://dx.doi.org/10.1016/j.is.2016.07.009


an event about distributed databases.2 Since then, some
researchers [58,57] have pointed out that new information
management paradigms such as the Internet of Things
would need radical changes in the way data is stored. In
this context, traditional databases cannot cope with the
generation of massive amounts of information by different
devices, including GPS information, RFIDs, IP addresses,
Unique Identifiers, data and metadata about the devices,
sensor data and historical data.

In general, NoSQL databases are unstructured, i.e., they
do not have a fixed schema and their usage interface is
simple, allowing developers to start using them quickly. In
addition, these databases generally avoid joins at the data
storage level, as such operations are often expensive,
leaving this task to each application. The developer must
decide whether to perform joins at the application level or,
alternatively, denormalize data. In the first case, the deci-
sion may involve gathering data from several physical
nodes based on some criteria and then join the collected
data. This approach requires more development effort but,
in recent years, several frameworks such as MapReduce
[31] or Pregel [74] have considerably eased this task by
providing a programming model for distributed and par-
allel processing. In MapReduce, for example, the model
prescribes two functions: a map function that process key-
value pairs in the original dataset, producing new pairs,
and a reduce function that merges the different results
associated to each pair produced by the map function.

Instead, if denormalization is chosen, multiple data
attributes can be replicated in different storage structures.
For example, suppose a system to store user photos. To
optimize those queries for photos belonging to users of a
certain nationality, the Nationality field may be replicated
in the User and Photo data structures. Naturally, this
approach rises special considerations regarding updates of
the Nationality field, since inconsistencies between the
User and Photo data structures might occur.

Many NoSQL databases are designed to be distributed,
which in turn allows increasing their capacity by means of
just adding nodes to the infrastructure, a property also
known as horizontal scaling. In NoSQL databases (as in
most distributed database systems), a mechanism often
used to achieve horizontal scaling is sharding, which
involves splitting the data records into several indepen-
dent partitions or shards using a given criterion, e.g. the
record ID number. In other cases, the mechanism
employed is replication, i.e. mirroring data records across
several servers, which while not scaling well in terms of
data storage capacity, allows increasing throughput and
achieving high availability. Both sharding and replication
are orthogonal concepts that can be combined in several
ways to provide horizontal scaling.

In most implementations, the hardware requirements
of individual nodes should not exceed those of a tradi-
tional personal computer, in order to reduce the costs of
building such systems and also to ease the replacement of
faulty nodes.

NoSQL databases can be divided into several categories
according to the classification proposed in [113,19,67,49],
each prescribing a certain data layout for the stored data:

� Key-Value: These databases allow storing arbitrary data
under a key. They work similarly to a conventional hash
table, but by distributing keys (and values) among a set
of physical nodes.

� Wide Column or Column Families: Instead of saving data
by row (as in relational databases), this type of data-
bases store data by column. Thus, some rows may not
contain part of the columns, offering flexibility in data
definition and allowing to apply data compression
algorithms per column. Furthermore, columns that are
not often queried together can be distributed across
different nodes.

� Document-oriented: A document is a series of fields with
attributes, for example: name¼“John”, lastname¼“

Smith” is a document with 2 fields. Most databases of
this type store documents in semi-structured formats
such as XML [16] (eXtensible Markup Language), JSON
[28] (JavaScript Object Notation) or BSON [77] (Binary
JSON). They work similarly to Key-Value databases, but
in this case, the key is always a document's ID and the
value is a document with a pre-defined, known type
(e.g., JSON or XML) that allows queries on the docu-
ment's fields.

Moreover, some authors also conceive Graph-oriented
databases as a fourth category of NoSQL databases
[49,113]:

� Graph-oriented: These databases aim to store data in a
graph-like structure. Data is represented by arcs and
vertices, each with its particular attributes. Most Graph-
oriented databases enable efficient graph traversal, even
when the vertices are on separate physical nodes.
Moreover, this type of database has received a lot of
attention lately because of its applicability to social data.
This attention has brought accompanied new imple-
mentations to accommodate with the current market.
However, some authors exclude Graph-oriented data-
bases from NoSQL because they do not fully align with
the relaxed model constraints normally found in NoSQL
implementations [19,67]. In this work, we decided to
include Graph-oriented databases because they are
essentially non-relational databases and have many
applications nowadays [2].

In the following sections we introduce and discuss the
most prominent databases in each of the categories men-
tioned before. Table 1 lists the databases analyzed,
grouped by category. Although there are many products
with highly variable feature sets, most of the databases are
immature compared to RDBMSs, so that a very thorough
analysis should be done before choosing a NoSQL solution.
Some factors that may guide the adoption of NoSQL as data
storage systems are:

� Data analysis: In some situations it is necessary to extract
knowledge from data stored in a database. Among the2 NoSQL Meetup 2009, http://nosql.eventbrite.com/.

A. Corbellini et al. / Information Systems 63 (2017) 1–232

http://nosql.eventbrite.com/


Download English Version:

https://daneshyari.com/en/article/4945073

Download Persian Version:

https://daneshyari.com/article/4945073

Daneshyari.com

https://daneshyari.com/en/article/4945073
https://daneshyari.com/article/4945073
https://daneshyari.com

