
Comparing columnar, row and array DBMSs to process
recursive queries on graphs

Carlos Ordonez, Wellington Cabrera n, Achyuth Gurram
Department of Computer Science, University of Houston, Houston, TX 77204, United States

a r t i c l e i n f o

Available online 26 April 2016

Keywords:
Graph
SQL
Recursive query
Matrix
Reachability
Query optimization

a b s t r a c t

Analyzing graphs is a fundamental problem in big data analytics, for which DBMS tech-
nology does not seem competitive. On the other hand, SQL recursive queries are a fun-
damental mechanism to analyze graphs in a DBMS, whose processing and optimization
are significantly harder than traditional SPJ queries. Columnar DBMSs are a new faster
class of database system, with significantly different storage and query processing
mechanisms compared to row DBMSs, still the dominating technology. With that moti-
vation in mind, we study the optimization of recursive queries on a columnar DBMS
focusing on two fundamental and complementary graph problems: transitive closure and
adjacency matrix multiplication. From a query processing perspective we consider the
three fundamental relational operators: selection, projection and join (SPJ), where pro-
jection subsumes SQL group-by aggregation. We present comprehensive experiments
comparing recursive query processing on columnar, row and array DBMSs to analyze large
graphs with different shape and density. We study the relative impact of query optimi-
zations and we compare raw speed of DBMSs to evaluate recursive queries on graphs.
Results confirm classical query optimizations that keep working well in a columnar DBMS,
but their relative impact is different. Most importantly, a columnar DBMS with tuned
query optimization is uniformly faster than row and array systems to analyze large graphs,
regardless of their shape, density and connectivity. On the other hand, there is no clear
winner between the row and array DBMSs.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Recursion is fundamental in computer science: many
algorithms are naturally recursive, such as graph algo-
rithms. Recursion has been incorporated into SQL via
recursive queries [15,12,19]. Unfortunately, recursion is not
available in all DBMSs and its implementation varies
widely despite an ANSI SQL standard. In fact, most row
DBMSs offer recursive queries (e.g. Postgres, Oracle, Ter-
adata, IBM DB2, MS SQL Server), but they are not currently
available in most columnar DBMSs (e.g. MonetDB, Vertica,

C-Store, with the exception of SAP Hana [4]). This lack of
querying capability is no coincidence as recursive queries
represent one of the most challenging class of queries. A
current trend in analytic database systems and data
warehousing are so-called column stores [27] (also called
column-oriented databases or columnar database sys-
tems), which have been shown to provide an order of
magnitude performance improvement in evaluating ana-
lytical queries on large tables, mixing joins and aggrega-
tions. Since we are concerned about systems used in
practice we focus on fully functional column-based data-
base systems (e.g. supporting SQL, basic ACID properties,
parallel evaluation, basic fault tolerance), which we simply
call “columnar DBMSs” to contrast them with “old” row-
oriented DBMSs. Within big data analytics, graph problems

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/infosys

Information Systems

http://dx.doi.org/10.1016/j.is.2016.04.006
0306-4379/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail address: wcabrera@cs.uh.edu (W. Cabrera).

Information Systems 63 (2017) 66–79

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.04.006
http://dx.doi.org/10.1016/j.is.2016.04.006
http://dx.doi.org/10.1016/j.is.2016.04.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.04.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.04.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.04.006&domain=pdf
mailto:wcabrera@cs.uh.edu
http://dx.doi.org/10.1016/j.is.2016.04.006


are particularly difficult given the size of data sets, the
complex structure of the graph (density, shape) and the
mathematical nature of computations (i.e. graph algo-
rithms). With that motivation in mind, we study the
optimization of recursive queries on a columnar DBMS to
analyze large graphs.

1.1. Motivation

We focus on the evaluation of queries with linear
recursion, which solve a broad class of difficult problems
including reachability, shortest paths, network flows and
hierarchical aggregation. Some motivating examples
include the following. Assume that there is a human
resources database, with a table containing employee/
manager information (a self-relationship in ER modeling
terms). That is, there are two columns corresponding to
the employee and the manager. Typical queries include:
“list employees managed directly or indirectly by manager
X”, “how many people are managed by Y?”, “list managers
with at least 10 managed employees”, “sum the salaries of
all employees managed by Z”. Assume that you have a
database with flight information from multiple airlines. In
this case the input table has a departing city and an
arriving city, with associated cost and distance. Repre-
sentative queries include: “give me all cities I can arrive to
departing from this airport with no more than 2 connec-
tions”, “find the cheapest flight between every pair of
cities”, “count the number of cities reachable with no more
than 3 connections”, “for every pair of cities count how
many potential flights there are”. As a more modern
example related to the Internet, consider a social network
like Facebook or Twitter, where typical queries include the
following. “How many people are indirectly related to
other persons with up to two common acquaintances?”,
“is there anyone in group A who knows someone in group
B, and if so, howmany connections are there between both
groups?”, “if one person spreads some news/gossip, how
many people can be reached?”. We should mention we do
not tackle queries mixing negation and recursion which
represent a harder class of queries. In summary, recursive
queries open up the possibility to exploit a columnar
DBMS to solve many fundamental graph problems.

Efficient processing of recursive queries is a funda-
mental problem in the theory of databases, where Datalog
is the most prominent declarative language [1]. In con-
trast, research on recursive queries in SQL is rather scarce
and existing research has only focused on row storage, the
dominating storage for the past three decades. This is due
to variations in recursive query implementation (despite
the ANSI standard), the difficulty in understanding how
recursion and query optimizations are combined and the
common perception that a DBMS is hard to tune. However,
graph problems are becoming more prevalent and more
graph-structured data sets are now stored on SQL engines.
To the best of our knowledge, optimization of recursive
queries has not been revisited with columnar DBMSs.
Having columnar DBMSs as the main motivation to per-
form graph analytics, these are some representative
research issues: can relational DBMSs tackle large graphs
or should they get out of the way and let other no-SQL

systems do the job? are columnar DBMSs indeed faster?
is it necessary to adapt classical query optimization tech-
niques to columnar DBMSs? are there considerations to
change or improve existing storage or indexing techni-
ques? are there new considerations to accelerate recursive
joins, the most demanding relational operator? can
aggregation help reducing the size of intermediate results
and perhaps query evaluation time? does the graph
structure and connectivity impact query processing time,
as it happens in Hadoop/noSQL systems? is recursion
depth a big hurdle in dense graphs, as past research has
shown? We attempt to provide clear answers to these
questions.

1.2. Contributions

This is an overview of our research contributions. We
start by reviewing a unified Seminaïve algorithm that
works on both column and row DBMSs, based on auto-
matically generated SQL queries. As a major contribution
of our paper, we establish a connection between two
graph problems and two recursive queries: transitive clo-
sure evaluated with a recursive join and adjacency matrix
multiplication evaluated with a recursive query combining
join and aggregation. We revisit query optimization of SPJ
queries showing even though recursive query optimization
is a well studied problem, there are indeed new research
issues on columnar DBMSs. In order to study scalability
and query optimizations with predictable results, we
introduce a flexible graph generator that allows simulating
graphs representing the Internet and social networks.
Finally, we present a benchmark comparing a columnar
DBMS, a row DBMS and an array DBMS, covering a wide
spectrum of database technologies available today.

1.3. Article outline

Section 2 , a reference section, introduces graph and
relational database definitions and gives an overview of
storage mechanisms. Section 3 presents our main technical
contributions: the standard Semi-naïve algorithm to
evaluate recursive queries, SQL queries for each algo-
rithmic step, query optimizations for relational operators,
and their algebraic query transformations, highlighting
differences in a columnar DBMS. We also include a time
complexity analysis per relational operator. Section 4
compares query processing in a columnar DBMS with two
prominent DBMSs: row-based and array. Experiments also
evaluate the impact of each query optimization on graphs
with different structure, density and connectivity. Section
5 discusses closely related work, focusing on SQL query
optimization. Section 6 summarizes theoretical contribu-
tions, experimental findings, and directions for future
research.

2. Definitions

This is a reference section which introduces standard
graph definitions from a discrete mathematics perspective,
the relational database model and basic SQL queries

C. Ordonez et al. / Information Systems 63 (2017) 66–79 67



Download English Version:

https://daneshyari.com/en/article/4945077

Download Persian Version:

https://daneshyari.com/article/4945077

Daneshyari.com

https://daneshyari.com/en/article/4945077
https://daneshyari.com/article/4945077
https://daneshyari.com

