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a b s t r a c t

This paper is devoted to the development of a new saturated non-parallel distributed compensation
control law for disturbed Takagi–Sugeno fuzzy systems subject to both control input and state con-
straints. In order to cover a large range of real-world applications, both L2 and L1 disturbances are
considered which result in two different control design procedures. A parameter-dependent version of
the generalized sector condition is effectively exploited in a fuzzy Lyapunov control framework to handle
the control input saturation. Moreover, the proposed control method is based on the concept of robust
invariant set which is able to provide an explicit characterization of the estimated domain of attraction of
the closed-loop system. Different optimization algorithms are also proposed to deal with the trade-off
between different closed-loop requirements in a local control context. The design conditions are
expressed in terms of linear matrix inequalities which can be solved efficiently with available solvers.
The numerical examples illustrate how the proposed methodology leads to less conservative results as
well as less computational complexity when compared to very recent works in the literature.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Nowadays, the stability analysis and control design based on
Takagi–Sugeno (T–S) fuzzy models [1] have become the most
popular research platform in fuzzy model-based control [2].
Indeed, over the past two decades tremendous investigations have
been devoted to the study of T–S control systems [2–8]. This fact is
due to many outstanding features of T–S fuzzy models for control
purposes [3]. First, they can be used to approximate any smooth
nonlinear system with any given accuracy. In particular, the sector
nonlinearity approach provides an exact T–S representation of a
given nonlinear model in a compact set of the state variables.
Second, thanks to its polytopic structure with linear systems in
consequent parts, T–S representation allows for some possible
extensions of linear control techniques to nonlinear systems.

The direct Lyapunov method has been efficiently exploited to
study the stability and control synthesis of T–S fuzzy systems [2,6–
10]. The derived conditions are expressed in terms of linear matrix
inequalities (LMIs) [11] such that they are efficiently solvable with
available numerical solvers. It is noteworthy that depending on the
choice of the Lyapunov function, the derived conditions have

different degrees of conservativeness. The following three types of
Lyapunov functions have been mainly investigated in the T–S
fuzzy control framework, namely quadratic, piecewise and
parameter-dependent Lyapunov functions [2]. Despite the low-
complexity of the derived conditions [3], quadratic Lyapunov
functions lead generally to conservative results [12]. Piecewise
Lyapunov functions [13] could be applied to overcome this major
drawback. However, this type of Lyapunov functions requires the
membership functions to induce a polyhedral partition of the state
space. This fact is not compatible with T–S fuzzy models obtained
from original nonlinear systems by using the sector nonlinearity
approach [14]. As a consequent, piecewise Lyapunov functions can
only be used to deal with nonlinear systems in the sense of
approximation. Recent LMI alternative methodology to stability
conditions considering piecewise Lyapunov functions is presented
in [15]. However, control design conditions based on piecewise
Lyapunov functions are in general expressed in terms of bilinear
matrix inequalities [16,17] which are hardly tractable with avail-
able numerical solvers. The effectiveness of parameter-dependent
Lyapunov functions for stability analysis and control design has
been demonstrated in [9,18–21]. This type of Lyapunov functions
seems to be the best alternative to solve all drawbacks of both
previous ones, especially for discrete-time T–S fuzzy systems
[8,12,19,22].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/neucom

Neurocomputing

http://dx.doi.org/10.1016/j.neucom.2016.05.063
0925-2312/& 2016 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: nguyen.trananhtu@gmail.com (A.-T. Nguyen).

Neurocomputing 207 (2016) 793–804

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2016.05.063
http://dx.doi.org/10.1016/j.neucom.2016.05.063
http://dx.doi.org/10.1016/j.neucom.2016.05.063
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.05.063&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.05.063&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2016.05.063&domain=pdf
mailto:nguyen.trananhtu@gmail.com
http://dx.doi.org/10.1016/j.neucom.2016.05.063


Physical constraints such as control input saturation and sys-
tem state constraints are ubiquitous in real-world applications due
to safety and/or economic reasons. The presence of input satura-
tion seriously degrades the closed-loop performance, in the
extreme case, the stability may be lost [23]. However, this practical
control issue has not been completely addressed for T–S fuzzy
control systems [10,24–26]. Some notable works can be cited as
follows. In [27–29], a norm-bounded approach was used to deal
with the actuator saturation. The resulting non-saturated con-
trollers are generally very conservative and often lead to poor
closed-loop performance [23,30]. Descriptor representation
approach [17] has been recently employed to deal with
continuous-time input-saturated T–S fuzzy systems in [31]. It
should be noted that this result is only applied to a restrictive class
of T–S fuzzy systems with all linear subsystems being open-loop
stable. The saturation function was represented in polytopic form
to deal with input nonlinearity of continuous-time T–S systems
[30,32,33], then extended to time-delay T–S systems [34] and a
class of switching T–S systems [5,25]. However, based on quadratic
Lyapunov functions these results could be conservative. It should
be stressed that state constraints were not considered in most of
these works (except for [25]). Such type of constraints appears
naturally when the sector nonlinearity approach is used to obtain
T–S representation of nonlinear systems [35]. Explicit considera-
tion of these limitations allows to prevent destabilizing initial
conditions of the closed-loop systems [26]. Especially, this
becomes crucial when disturbance signals are actively involved in
the systems [10]. Recently, interesting non-quadratic boundedness
approach has been also proposed in [24] to deal with T–S fuzzy
systems subject to both control input and state constraints. Notice
that the results proposed in [24] require several line searches to
solve the design conditions which are costly in terms of compu-
tation. Moreover, slack decision variables have been intensively
introduced in [24] to reduce the conservatism of the results.
Therefore, the resulting design conditions are of high complexity
and not suitable for high dimensional T–S systems or T–S systems
with important number of subsystems. These facts will be clearly
shown in Section 5 by means of a numerical example. It is also
important to highlight that the method in [24] cannot deal with
the case where T–S systems are subject to L2 disturbances.

Motivated by the above control issues, this paper is devoted to
the development of a new input-saturated control law for dis-
turbed T–S fuzzy systems subject to both control input and state
constraints. Differently from [24], the proposed method is based
on the concept of robust invariant set [36]. The main contributions
of the new method can be summarized as follows:

� A parameter-dependent version of the generalized sector con-
dition has been effectively exploited in the framework of fuzzy
Lyapunov function based control design to handle the actuator
saturation. This fact leads to less conservative design conditions
with low computational complexity compared to existing works
dealing with the same class of problem.

� The new method can provide an explicit characterization of the
estimated domain of attraction of the closed-loop system which
is not the case of [24].

� The proposed results can be applied to T–S systems subject to
L1 or L2 disturbances. Numerical examples illustrate that the
proposed methodology can be applied to a large class of non-
linear systems and suitable for real-world-applications.

The paper is organized as follows. Section 2 formulates the
control problem and some useful preliminaries are also presented.
In Section 3, we develop new non-quadratic design conditions for
two different cases corresponding to two types of disturbances
affecting the constrained T–S systems. Optimization algorithms for

different control design purposes are presented in Section 4. The
interests of the proposed method are clearly demonstrated by
means of examples in Section 5. Finally, Section 6 provides some
concluding remarks.

Notation. For an integer number r, Ωr denotes the set
1;2;…; rf g. I denotes the identity matrix of appropriate dimension.
For any square matrix X, He Xð Þ ¼ XþX> . X40 means that the
matrix X is positive definite. The ith element of a vector u is
denoted u ið Þ and X ið Þ denotes the ith row of matrix X. nð Þ stands for
matrix blocks that can be deduced by symmetry. For a positive
definite function V xð Þ defined on Rnx , we denote EVρ ¼
xARnx : V xð Þrρ
� �

and EV � EV;1. The scalar functions ηi, iAΩr , are
said to verify the convex sum property on a set D, if ηi θ

� �
Z0 andPr

i ¼ 1 ηi θ
� �¼ 1 for 8θAD. For such functions and for matrices Yi

and Zij of appropriate dimensions, we denote

Yθ ¼
Xr
i ¼ 1

ηi θ tð Þ� �
Yi; Zθθ ¼

Xr
i ¼ 1

Xr
j ¼ 1

ηi θ tð Þ� �
ηj θ tð Þ� �

Zij

Y �1
θ ¼

Xr
i ¼ 1

ηi θ tð Þ� �
Yi

 !�1

; Yθþ ¼
Xr
i ¼ 1

ηi θ tþ1ð Þ� �
Yi ð1Þ

Throughout this paper, the time argument will be dropped when
convenient.

2. Problem formulation and preliminaries

2.1. Problem formulation

In this paper, the fuzzy model proposed in [1] is used to
approximate and/or represent a given nonlinear system. This type
of model is described by fuzzy IF–THEN rules which represent
local linear input–output relations of a nonlinear system. The ith
rules of the discrete-time T–S fuzzy system subject to control input
saturation can be represented in the following form

Model rule i:
IF θ1 is Mi1 and … and θp is Mip

THEN
x tþ1ð Þ ¼ Aix tð ÞþBu

i sat u tð Þð ÞþBw
i w tð Þ

z tð Þ ¼ Cix tð Þ

(
ð2Þ

where sat u lð Þ
� �¼ sign u lð Þ

� �
min u lð Þ

�� ��;umax lð Þ
� �

, lAΩnu , and Mij, iAΩr ,
jAΩp, is the fuzzy set and r is the number of model rules; xARnx is
the state, uARnu is the control input, wARnw is the system dis-
turbance, zARnz is the performance output, and θ¼ θ1;…;θp

� �>
ARp is the vector of premise variables. The real matrices Ai, Biu, Biw,
Ci, iAΩr , are constant and of adequate dimensions. Then, the T–S
fuzzy system is defined as follows:

x tþ1ð Þ ¼
Xr
i ¼ 1

ηi θ
� �

Aix tð ÞþBu
i sat u tð Þð ÞþBw

i w tð Þ� �

z tð Þ ¼
Xr
i ¼ 1

ηi θ
� �

Cix tð Þ

8>>>>><
>>>>>:

ð3Þ

where the normalized membership functions ηi θ
� �

, iAΩr , are
defined as

ηi θ
� �¼ λi θ

� �
Pr

j ¼ 1 λj θ
� �; λj θ

� �¼ ∏
p

l ¼ 1
Mlj θ
� � ð4Þ

In (4), Mlj θ
� �

denotes the membership function of fuzzy set Mlj. It
is worth noting that the normalized membership functions ηi θ

� �
,

iAΩr , satisfy the convex sum property.

Remark 1. T–S fuzzy system is a class of fuzzy systems where the
consequent parts are functions of premise variables [1]. These
functions can be linear or affine as most of the cases in fuzzy
control framework [2,3]. However, T–S fuzzy systems with local
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