
Information Systems 69 (2017) 180–193

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Shrink: Distance preserving graph compression

Amin Sadri a , ∗, Flora D. Salim

a , Yongli Ren

a , Masoomeh Zameni b , Jeffrey Chan

a ,
Timos Sellis c

a School of Sience, RMIT University, Melbourne, Australia
b School of Computing and Information Systems, University of Melbourne, Melbourne, Australia
c School of Software and Electrical Engineering, Swinburne University of Technology, Melbourne, Australia

a r t i c l e i n f o

Article history:

Received 10 January 2017

Revised 19 April 2017

Accepted 1 June 2017

Available online 7 June 2017

Keywords:

Graph compression

Graph simplification

Graph databases

Shortest paths

a b s t r a c t

The ever increasing size of graphs makes them difficult to query and store. In this paper, we present

Shrink , a compression method that reduces the size of the graph while preserving the distances between

the nodes. The compression is based on the iterative merging of the nodes. During each merging, a sys-

tem of linear equations is solved to define new edge weights in a way that the new weights have the

least effect on the distances. Merging nodes continues until the desired size for the compressed graph is

reached. The compressed graph, also known as the coarse graph, can be queried without decompression.

As the complexity of distance-based queries such as shortest path queries is highly dependent on the

size of the graph, Shrink improves the performance in terms of time and storage. Shrink not only pro-

vides the length of the shortest path but also identifies the nodes on the path. The approach has been

applied to both weighted and unweighted graphs including road network, friendship network, collabo-

ration network, web graph and social network. In the experiment, a road network with more than 2.5

million nodes is reduced to fifth while the average relative error is less than 1%.

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, it is increasingly common to find graphs with mil-

lions of nodes in various domains. Due to the commonness of

large graphs, graph compression is becoming an important re-

search topic. In this process, also known as graph simplification,

the complexity of the graph is reduced while certain characteristics

of the graph are preserved. Graph compression can be performed

by reducing the number of edges, nodes or extracting a high-level

abstraction of the graph. A similar problem is graph summariza-

tion where summary graph uncovers the underlying topology of

the original graph [12,13,24,34] .

Graph compression has three main purposes. First, graph com-

pression algorithms produce a simpler graph that can be queried

faster than the original graph. This is useful for graph-based min-

ing algorithms and also more complex problems (e.g. measur-

ing similarities between graphs). Distance-based queries such as

shortest-path have a great importance [6,7,19,35,42] . Many fun-

damental tasks in graph mining, such as computing diameter,

∗ Corresponding author.

E-mail addresses: amin.sadri@rmit.edu.au (A. Sadri), flora.salim@rmit.edu.au (F.D.

Salim), yongli.ren@rmit.edu.au (Y. Ren), mzameni@student.unimelb.edu.au (M. Za-

meni), jeffrey.chan@rmit.edu.au (J. Chan), tsellis@swin.edu.au (T. Sellis).

closeness, centrality, and betweenness centrality, are dependent

on computing shortest path distance. It has countless applica-

tions in transportation networks [3,23,43] , networking [8,40] , and

databases [33] . Distance preserving graph compression speeds up

the shortest path queries because they run on a smaller graph. Sec-

ond, the compressed graph, also known as the coarse graph, can

be stored in less space. Over the past few years, due to increas-

ing the size of graph-structured databases, it becomes challenging

and expensive to store the data, and graph compression techniques

are deployed to reduce space consumption [10,24,25] . Third, graph

compression algorithms help the users to understand and visualize

the high-level structure of the graph [4,21,30] [21] [30] . It is almost

impossible to understand the information encoded in large graphs

with thousands or even millions of nodes by only visual inspec-

tion [36] . The coarse graph, produced by compression, is smaller

and easier to be visualized [18] .

Despite the importance of distance-based queries, only a few

compression methods were proposed to preserve the distance

[32,37] . Moreover, most of these existing methods are designed

to compress unweighted graphs, and are not compatible with

weighted graphs [9,10,14] . Furthermore, another challenge is that

sometimes, the compression ratio needs to be chosen by the user.

In this case, the user is able to control the trade-off between the

accuracy and the size of the compressed graph. However, in exist-

http://dx.doi.org/10.1016/j.is.2017.06.001

0306-4379/Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.is.2017.06.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2017.06.001&domain=pdf
mailto:amin.sadri@rmit.edu.au
mailto:flora.salim@rmit.edu.au
mailto:yongli.ren@rmit.edu.au
mailto:mzameni@student.unimelb.edu.au
mailto:jeffrey.chan@rmit.edu.au
mailto:tsellis@swin.edu.au
http://dx.doi.org/10.1016/j.is.2017.06.001

A. Sadri et al. / Information Systems 69 (2017) 180–193 181

ing methods [16,32] , the compression ratio is determined by the

method, not the user.

In this paper, we introduce a novel distance preserving com-

pression method Shrink , which can be used to query and store

both weighted and unweighted graphs, e.g. enhancing shortest-

path or other distance-based algorithms. Compressing with Shrink

has the least effect on the distances between nodes. Specifically,

when merging two nodes to a supernode, a system of equations

is introduced to minimize the distance variations caused by this

merge. The rationale behind this is to keep the mean of caused

error equal to zero. These equations determine the edge weights

connected to the supernode. After each merging, the number of

nodes decreases by one and merging stage, called coarsening stage,

continues until the desired size is achieved. The next stage is ex-

ecuting stage where the distance based query runs on the coarse

graph. The last stage, refining stage, is optional that provides the

path between the queried nodes. We have theoretically proved that

for long paths, the error of compression converges to zero if merg-

ing errors are independent.

To sum up, Shrink possesses the following features: (1) it is lin-

ear in the number of nodes when σ �| V | , where | V | is the num-

ber of nodes and σ is the average degree (see Section 4.2). This is

common in large graphs with thousands or millions of nodes; (2)

the larger the original graph is, the more accurate Shrink is. The

reason is that large graphs usually have long paths and Shrink has

less effect on the length of the long paths (see Section 3.2 and 6.4);

(3) the error rate and the compression ratio are adjustable; (4) it

provides not only distances but also the corresponding instances

(nodes) of the shortest paths; (5) it is applicable to all types of

distance queries, including reachability, single-source shortest-path

(SSSP), all-pairs shortest path (APSP), closeness centrality and be-

tweenness centrality. The experiment results show that compress-

ing a two-million-node graph into fifths has the average error less

than 1%.

The main contributions of the paper are as follows:

• We propose a compression method Shrink that has the least ef-

fect on the distances between the nodes.
• Shrink is fast and linear time complexity in the number of

nodes, O (| V |). Hence, it is applicable to large graphs.
• The proposed method is evaluated on both weighted and un-

weighted real-world data sets, including road network, friend-

ship network, collaboration network, web graph and social net-

work, etc.

In the next section, we have definitions and problem statement.

In Section 3 , first, we present the baselines for defining the equa-

tions and discuss why the equations are suitable for assignment of

the new weights. Then, an overview of Shrink is provided. Three

stages of Shrink are described in section 4 and 5. We evaluate our

method in terms of time, accuracy and storage in Section 6 . Finally,

Section 7 and 8 discuss related work and conclusion, respectively.

2. Problem formulation

In this section, we first introduce the necessary notation to de-

scribe the problem formulation, and then we state the problem.

Definition 1. Original graph is the input graph which is a triple G =

(V, E, w) where V is a set of nodes (or vertices), E ⊂ V × V denotes

edges, and w : E → R + assigns a non-negative weight to each edge

e ∈ E .

In this paper, the original graphs can be either unweighted or

weighted. For unweighted graphs, the same weight can be assigned

to all edges. The notations used in this paper are listed in Table 1 .

Definition 2. Coarse graph , G

′ = (V ′ , E ′ , w

′) , is the compressed

graph. V ′ = { v 1 ′ , . . . , v n ′ } is a partition of V (i.e. v i
′ ⊂V for all

Table 1

Definition of the variables.

Variable Definition

G Original graph: G = (V, E, w)

V Set of the nodes in the original graph

E Set of the edges in the original graph: E ⊂ V × V

w Weights on E in the original graph: w : E → R +

x, y two nodes in the original graph x ∈ V, y ∈ V
u, v To be merged nodes in the original graph u ∈ V, v ∈ V
G ′ Coarse graph: G ′ = (V ′ , E ′ , w

′)
V ′ Set of the nodes in the coarse graph

E ′ Set of the edges in the coarse graph: E ′ ⊂ V ′ × V ′
w

′ Weights on E ′ in the coarse graph: w

′ : E ′ → R +

v ′ Supernode in the coarse graph v ′ ∈ V ′

k Number of v ′ ’s neighbors

N (u) Set of u ’s neighbors that are not connected to v

N (v) Set of v ’s neighbors that are not connected to u

N (uv) Set of Common neighbors of u and v

N Set of neighbors of u and v : N = N(u) ∪ N(v) ∪ N(u v)
v i A neighbour of u or v

w vi weight of the edge between v i and v

w ui weight of the edge between v i and u

w

′
v i weight of the edge between v i and v ′

l (v i , v j) Length of the path that connects v i and v j
and crosses u or v in the original graph

l ′ (v i , v j) Length of the path that connects v i and v j
and crosses v ′ in the coarse graph

i,
⋃

i v i ′ = V, and v i ′
⋂

v j ′ = ∅ for all v j
 = v i). Namely, each node

v i
′ ∈ V

′ , also known as a supernode, may consist of some nodes in

G. E ′ denotes the edges set E ′ ⊂ V

′ × V

′ , w

′ : E ′ → R + . In contrast to

the nodes, there is no mapping between the edges.

E ′ = { (u

′ , v ′) | u ∈ u

′ , v ∈ v ′ , (u, v) ∈ E} (1)

Specifically, two supernodes are connected if and only if there

is a node in one supernode that is connected to a node in the

other supernode. Here, the main problem is assigning weights to

the new edges. To this end, we define and solve equations to have

new weights with the least effects on the distances between nodes.

Definition 3. The distance between x and y is d (x, y), which is

the length of the shortest path between x and y in the original

graph. The shortest path is a path with the lowest total sum of

edge weights. Similarly, d ′ (x, y) denotes the length of the shortest

path between the supernodes that contain x and y in the coarse

graph.

Definition 4. Error of the compression for nodes x and y, Err (x, y),

is the difference between the distance of x and y in the original

graph and the distance of the supernodes that x and y belongs to

in the coarse graph.

Er r (x, y) =

∣∣d(x, y) − d ′ (x, y)
∣∣ , x
 = y (2)

Definition 5. Normalizing Err (x, y) with d (x, y), we have the rela-

tive error of nodes x and y .

REr r (x, y) =

| d(x, y) − d ′ (x, y) |
d(x, y)

, x
 = y (3)

where RErr (x, y) denotes the relative error.

Definition 6. Given G and G

′ , the compression ratio of the coars-

ening stage is defined as CR (G

′) =

| V ′ |
| V | . The number of edges is not

included in the definition.

Problem : Given the original graph G and a compression ratio CR ,

0 < CR < 1, how to define G

′ such that the sum of the errors is

minimum over all pairs. Specifically, the cost function that should

be minimized is as follow: ∑

x,y ∈ V
Er r (x, y) , x
 = y (4)

Download English Version:

https://daneshyari.com/en/article/4945103

Download Persian Version:

https://daneshyari.com/article/4945103

Daneshyari.com

https://daneshyari.com/en/article/4945103
https://daneshyari.com/article/4945103
https://daneshyari.com

