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a b s t r a c t 

The ever increasing size of graphs makes them difficult to query and store. In this paper, we present 

Shrink , a compression method that reduces the size of the graph while preserving the distances between 

the nodes. The compression is based on the iterative merging of the nodes. During each merging, a sys- 

tem of linear equations is solved to define new edge weights in a way that the new weights have the 

least effect on the distances. Merging nodes continues until the desired size for the compressed graph is 

reached. The compressed graph, also known as the coarse graph, can be queried without decompression. 

As the complexity of distance-based queries such as shortest path queries is highly dependent on the 

size of the graph, Shrink improves the performance in terms of time and storage. Shrink not only pro- 

vides the length of the shortest path but also identifies the nodes on the path. The approach has been 

applied to both weighted and unweighted graphs including road network, friendship network, collabo- 

ration network, web graph and social network. In the experiment, a road network with more than 2.5 

million nodes is reduced to fifth while the average relative error is less than 1%. 

Crown Copyright © 2017 Published by Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays, it is increasingly common to find graphs with mil- 

lions of nodes in various domains. Due to the commonness of 

large graphs, graph compression is becoming an important re- 

search topic. In this process, also known as graph simplification, 

the complexity of the graph is reduced while certain characteristics 

of the graph are preserved. Graph compression can be performed 

by reducing the number of edges, nodes or extracting a high-level 

abstraction of the graph. A similar problem is graph summariza- 

tion where summary graph uncovers the underlying topology of 

the original graph [12,13,24,34] . 

Graph compression has three main purposes. First, graph com- 

pression algorithms produce a simpler graph that can be queried 

faster than the original graph. This is useful for graph-based min- 

ing algorithms and also more complex problems (e.g. measur- 

ing similarities between graphs). Distance-based queries such as 

shortest-path have a great importance [6,7,19,35,42] . Many fun- 

damental tasks in graph mining, such as computing diameter, 
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closeness, centrality, and betweenness centrality, are dependent 

on computing shortest path distance. It has countless applica- 

tions in transportation networks [3,23,43] , networking [8,40] , and 

databases [33] . Distance preserving graph compression speeds up 

the shortest path queries because they run on a smaller graph. Sec- 

ond, the compressed graph, also known as the coarse graph, can 

be stored in less space. Over the past few years, due to increas- 

ing the size of graph-structured databases, it becomes challenging 

and expensive to store the data, and graph compression techniques 

are deployed to reduce space consumption [10,24,25] . Third, graph 

compression algorithms help the users to understand and visualize 

the high-level structure of the graph [4,21,30] [21] [30] . It is almost 

impossible to understand the information encoded in large graphs 

with thousands or even millions of nodes by only visual inspec- 

tion [36] . The coarse graph, produced by compression, is smaller 

and easier to be visualized [18] . 

Despite the importance of distance-based queries, only a few 

compression methods were proposed to preserve the distance 

[32,37] . Moreover, most of these existing methods are designed 

to compress unweighted graphs, and are not compatible with 

weighted graphs [9,10,14] . Furthermore, another challenge is that 

sometimes, the compression ratio needs to be chosen by the user. 

In this case, the user is able to control the trade-off between the 

accuracy and the size of the compressed graph. However, in exist- 
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ing methods [16,32] , the compression ratio is determined by the 

method, not the user. 

In this paper, we introduce a novel distance preserving com- 

pression method Shrink , which can be used to query and store 

both weighted and unweighted graphs, e.g. enhancing shortest- 

path or other distance-based algorithms. Compressing with Shrink 

has the least effect on the distances between nodes. Specifically, 

when merging two nodes to a supernode, a system of equations 

is introduced to minimize the distance variations caused by this 

merge. The rationale behind this is to keep the mean of caused 

error equal to zero. These equations determine the edge weights 

connected to the supernode. After each merging, the number of 

nodes decreases by one and merging stage, called coarsening stage, 

continues until the desired size is achieved. The next stage is ex- 

ecuting stage where the distance based query runs on the coarse 

graph. The last stage, refining stage, is optional that provides the 

path between the queried nodes. We have theoretically proved that 

for long paths, the error of compression converges to zero if merg- 

ing errors are independent. 

To sum up, Shrink possesses the following features: (1) it is lin- 

ear in the number of nodes when σ �| V | , where | V | is the num- 

ber of nodes and σ is the average degree (see Section 4.2 ). This is 

common in large graphs with thousands or millions of nodes; (2) 

the larger the original graph is, the more accurate Shrink is. The 

reason is that large graphs usually have long paths and Shrink has 

less effect on the length of the long paths (see Section 3.2 and 6.4 ); 

(3) the error rate and the compression ratio are adjustable; (4) it 

provides not only distances but also the corresponding instances 

(nodes) of the shortest paths; (5) it is applicable to all types of 

distance queries, including reachability, single-source shortest-path 

(SSSP), all-pairs shortest path (APSP), closeness centrality and be- 

tweenness centrality. The experiment results show that compress- 

ing a two-million-node graph into fifths has the average error less 

than 1%. 

The main contributions of the paper are as follows: 

• We propose a compression method Shrink that has the least ef- 

fect on the distances between the nodes. 
• Shrink is fast and linear time complexity in the number of 

nodes, O (| V |). Hence, it is applicable to large graphs. 
• The proposed method is evaluated on both weighted and un- 

weighted real-world data sets, including road network, friend- 

ship network, collaboration network, web graph and social net- 

work, etc. 

In the next section, we have definitions and problem statement. 

In Section 3 , first, we present the baselines for defining the equa- 

tions and discuss why the equations are suitable for assignment of 

the new weights. Then, an overview of Shrink is provided. Three 

stages of Shrink are described in section 4 and 5. We evaluate our 

method in terms of time, accuracy and storage in Section 6 . Finally, 

Section 7 and 8 discuss related work and conclusion, respectively. 

2. Problem formulation 

In this section, we first introduce the necessary notation to de- 

scribe the problem formulation, and then we state the problem. 

Definition 1. Original graph is the input graph which is a triple G = 

(V, E, w ) where V is a set of nodes (or vertices), E ⊂ V × V denotes 

edges, and w : E → R + assigns a non-negative weight to each edge 

e ∈ E . 

In this paper, the original graphs can be either unweighted or 

weighted. For unweighted graphs, the same weight can be assigned 

to all edges. The notations used in this paper are listed in Table 1 . 

Definition 2. Coarse graph , G 

′ = (V ′ , E ′ , w 

′ ) , is the compressed 

graph. V ′ = { v 1 ′ , . . . , v n ′ } is a partition of V (i.e. v i 
′ ⊂V for all 

Table 1 

Definition of the variables. 

Variable Definition 

G Original graph: G = (V, E, w ) 

V Set of the nodes in the original graph 

E Set of the edges in the original graph: E ⊂ V × V 

w Weights on E in the original graph: w : E → R + 

x, y two nodes in the original graph x ∈ V, y ∈ V 
u, v To be merged nodes in the original graph u ∈ V, v ∈ V 
G ′ Coarse graph: G ′ = (V ′ , E ′ , w 

′ ) 
V ′ Set of the nodes in the coarse graph 

E ′ Set of the edges in the coarse graph: E ′ ⊂ V ′ × V ′ 
w 

′ Weights on E ′ in the coarse graph: w 

′ : E ′ → R + 

v ′ Supernode in the coarse graph v ′ ∈ V ′ 

k Number of v ′ ’s neighbors 

N ( u ) Set of u ’s neighbors that are not connected to v 

N ( v ) Set of v ’s neighbors that are not connected to u 

N ( uv ) Set of Common neighbors of u and v 

N Set of neighbors of u and v : N = N(u ) ∪ N(v ) ∪ N(u v ) 
v i A neighbour of u or v 

w vi weight of the edge between v i and v 

w ui weight of the edge between v i and u 

w 

′ 
v i weight of the edge between v i and v ′ 

l ( v i , v j ) Length of the path that connects v i and v j 
and crosses u or v in the original graph 

l ′ ( v i , v j ) Length of the path that connects v i and v j 
and crosses v ′ in the coarse graph 

i, 
⋃ 

i v i ′ = V, and v i ′ 
⋂ 

v j ′ = ∅ for all v j 
 = v i ). Namely, each node 

v i 
′ ∈ V 

′ , also known as a supernode, may consist of some nodes in 

G. E ′ denotes the edges set E ′ ⊂ V 

′ × V 

′ , w 

′ : E ′ → R + . In contrast to 

the nodes, there is no mapping between the edges. 

E ′ = { (u 

′ , v ′ ) | u ∈ u 

′ , v ∈ v ′ , (u, v ) ∈ E} (1) 

Specifically, two supernodes are connected if and only if there 

is a node in one supernode that is connected to a node in the 

other supernode. Here, the main problem is assigning weights to 

the new edges. To this end, we define and solve equations to have 

new weights with the least effects on the distances between nodes. 

Definition 3. The distance between x and y is d ( x, y ), which is 

the length of the shortest path between x and y in the original 

graph. The shortest path is a path with the lowest total sum of 

edge weights. Similarly, d ′ ( x, y ) denotes the length of the shortest 

path between the supernodes that contain x and y in the coarse 

graph. 

Definition 4. Error of the compression for nodes x and y, Err ( x, y ), 

is the difference between the distance of x and y in the original 

graph and the distance of the supernodes that x and y belongs to 

in the coarse graph. 

Er r (x, y ) = 

∣∣d(x, y ) − d ′ (x, y ) 
∣∣ , x 
 = y (2) 

Definition 5. Normalizing Err ( x, y ) with d ( x, y ), we have the rela- 

tive error of nodes x and y . 

REr r (x, y ) = 

| d(x, y ) − d ′ (x, y ) | 
d( x, y ) 

, x 
 = y (3) 

where RErr ( x, y ) denotes the relative error. 

Definition 6. Given G and G 

′ , the compression ratio of the coars- 

ening stage is defined as CR (G 

′ ) = 

| V ′ | 
| V | . The number of edges is not 

included in the definition. 

Problem : Given the original graph G and a compression ratio CR , 

0 < CR < 1, how to define G 

′ such that the sum of the errors is 

minimum over all pairs. Specifically, the cost function that should 

be minimized is as follow: ∑ 

x,y ∈ V 
Er r (x, y ) , x 
 = y (4) 
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