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In this paper, we focus on the problem of absolute stability of Lur'e systems with time-varying delay and
sector-bounded nonlinearity. An improved free-matrix-based inequality (FMBI) is derived. By using this
inequality and the convex combination technique, some new delay-dependent absolute stability criteria
are derived. These conditions are given in the term of linear matrix inequalities (LMIs) and accordingly
can be readily solved and checked. Finally, a numerical example is solved using the proposed method to
demonstrate the effectiveness and its improvement over existing ones.
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1. Introduction

Lur'e systems has received considerable attention since it was
presented in 1940s, and a variety of issues about Lur'e systems has
been investigated [1-4]. A time delay that frequently appear in
practical systems may degrade the system performance and even
cause the system to become unstable [5-9]. Thus, great efforts
have been devoted to investigating the absolute stability of Lur'e
systems with time-delay [10-13].

In [14,15], Han et al. investigate the absolute stability of a class
of Lur'e systems, respectively, with constant delay and time-
varying delay. In the case of time-varying delay, less conservative
conditions are obtained in [16] by retaining some useful infor-
mation and employing an improved free-matrix-weighting
(IFMW) approach to consider the relationship between the time-
varying and its upper bound. To reduce the conservativeness of
stability analysis on Lur'e systems with constant delay, improved
conditions were obtained by constructing a delay-partitioning
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Lyapunov-Krasovskii functional in [17]. Recently, a complete-
partitioning approach was proposed to investigate the absolute
stability of Lur'e systems with time-varying delay in [19], which
significantly reduces the conservativeness. Nevertheless, the
number and the dimension of LMIs involved in the condition
increase sharply with the increase of the partitioning interval,
which require higher computational cost. Therefore, how to
reduce the computation burden and the conservativeness of the
derived results need to be further investigated.

In this paper, we investigate the absolute stability of a class of
Lur'e systems with time-varying delay and sector-bounded non-
linearity. By proposing an improved free-matrix-based inequality
(FMBI) to bound the integral inequality yielded in the derivative of
the Lyapunov-Krasovskii functional, new absolute stability con-
ditions are presented based on the convex combination technique.
Since the delay-partitioning technique is not involved, the derived
results are relatively simple and less conservative than existing
ones. The numerical example verifies the effectiveness and the
merits of the presented method.

Notation: Throughout this paper, the superscripts ‘—1" and ‘T’
stand for the inverse and transpose of a matrix, respectively; rR™™
is the set of all n x m real matrices; R" denotes the n-dimensional
Euclidean space; P > 0 means that the matrix P is symmetric and
positive definite; diag{---} denotes a block-diagonal matrix; and
the symmetric terms in a symmetric matrix are denoted by ‘¥’; I is
an appropriately dimensioned identity matrix; Sym{X} =X +X".
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2. Problem statement

Consider the following system:
X(t) = Ax(t)+ Bx(t — d(t)) + Cw(t)
z(t) = Mx(t)+ Nx(t —d(t))

w(t) = —q(t,z(t))
x(t)=p(t),t e[—h, 0]

where x(t) e R", w(t)eRP and z(t) e RP are the state, input and
output vectors of the system, respectively; A,B,C,M and N are
constant matrices; the initial condition, ¢(t), is a continuous vector-
valued function of t e [—h, 0]. ¢(t,z(t)) e RP is a nonlinear function,
which is continuous in t, globally Lipschitz in z(t), and satisfies

[(t,z() — K1z(O)] [go(t, 2()) — Kz()] < O )

for vVt >0, ¢(t,0) =0, where K; and K, are real matrices and K =

K, — K, is a symmetric positive definite matrix. It is customarily said

that the nonlinear function, ¢(t, z(t)), belong to the sector [K, K3].
The delay, d(t), is a differentiable function that satisfies

M

O0<dity<h 3
and
Hy <d(O) < p, )

where h, u; and p, are constants.

Remark 1. By applying the loop transformation [20], we get that
the absolute stability of system (1) in the sector [K1, K3] is equal to
that of the following system:

x(t) = (A— CK1M)x(t) + (B— CK1N)x(t — d(t)) + Cw(t)

z(t) = Mx(t)+ Nx(t — d(t)) (5)

w(t) = —@(t,z(t))

in the sector [0,K].

Before presenting our main results, we introduce the following
lemmas, which are useful to derive the main results.

Lemma 1 ([18]). Let x be a differentiable signal in [a, f/] ->R". Then,
for any symmetric matrices R e R™", X;, X3 e R33" and matrices
Xy eR330 N, N, e R3™" sych that

X1 X2 Ny
O=|=% X3 Nl =0 (6)
%* % R

the following inequality holds:
p _
- / KT (©RY(S)ds < o' B 7
Ja

where
Q = (B—a) (X1 +1X3)+Sym{N1G; +N2G3}
T
G = [e] -2
;
G, = [2e} —e] -}
=10 0]

1
2=[010]
3=[001]

o @ o

. T
w= |:XT(ﬂ) X (@) ‘ﬁ/ﬁxT(s)ds} .

For sake of the reduction of computation complexity, the fol-
lowing lemma is obtained by setting X;=N;R™'N],
X3 =NiR™'NJ, X3 =N,R™'N} in (7).

Lemma 2. Let x be a differentiable signal in [a, f] - R". Then, for any
symmetric matrices R(e R™™") > 0, and N;, N, € R3™", the following
inequality holds:

y .
- / KT ($)Rx(s)ds < @' Qw ©)

where
Q = Sym{N,G1 +N2Go} +(B—a)(NiR™'NT +1N,R™IND)
and Gy, G;,e1,e;,¢e3 are defined in Lemma 1.

Lemma 3 (/21]). Let D, E, and F(t) be real matrices of appropriate
dimensions with F(t) satisfying FT (t)F(t) < I. Then, for any scalar € > 0

DF(t)E+ (DF(t)E)T < e~ 'DD" + €E"E.

3. Main results

In this section, we present our main results. To simplify vector
and matrix representation, the followings are denoted:

(6= [xT(t) S doX"©)ds 120X (s)ds xT(¢—d(t)) ]T
Tio oTom]T
m©) =[x £ )]

ns(t) = [xT(6) X (¢—d() x"(t—h)]"

1

1 ) T
na(t) = [% T awX" (s)ds h=dm I ,f’(t)xT(s)ds}

&0 = [l b0 O Fe—doy wio]'
€= [Onxi—1n In Onx@—in Onxp), i=1,2,...,7
es = [Opx7n Ip]

Now, we present the absolute stability criterion for system (1).

Theorem 1. Given scalars h, y; and p,, system (1) with a time-
varying delay d(t) satisfying (3) and (4) is absolutely stable in the
sector [K, K] if there exist matrices P> 0,Q >0,R>0,Z > 0, N;, N,,
M;, M5, and a scalar € >0 such that the LMIs (9) and (10) are
satisfied for d(t) e (M1, 1o}

[ Zlao—n hIIENy hITIN,

D, = * —hzZ 0 <0 9

%* * —3hz

[Zlaw-o0 hIIgM; hII{M,
Dy = % —hz 0 <0 (10)
* * —3hZ

where
E = Sym{IT} PIT,} + IT5QIT5 — (1 — d(t)IT5QI1 4+ e Re; — e}Res
+hegZes + Sym{ITiN I + TSN, IT7 + ITyM Ig
+ITEMy I 1o+ 110 4,
—eeleg —eel KMe; —eelKNe)
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