Information Systems B (REEE) ERE-EEN

Contents lists available at ScienceDirect e
Information
Systems
Information Systems
journal homepage: www.elsevier.com/locate/infosys e

Approximate furthest neighbor with application
to annulus query ™

Rasmus Pagh, Francesco Silvestri, Johan Sivertsen *, Matthew Skala

IT University of Copenhagen, Denmark

ARTICLE INFO ABSTRACT

Article history:

Received 30 November 2015
Received in revised form

24 May 2016

Accepted 12 July 2016
Recommended by: G. Vossen

Much recent work has been devoted to approximate nearest neighbor queries. Motivated by
applications in recommender systems, we consider approximate furthest neighbor (AFN)
queries and present a simple, fast, and highly practical data structure for answering AFN
queries in high-dimensional Euclidean space. The method builds on the technique of Indyk
(SODA 2003), storing random projections to provide sublinear query time for AFN. However,
we introduce a different query algorithm, improving on Indyk's approximation factor and
reducing the running time by a logarithmic factor. We also present a variation based on a
query-independent ordering of the database points; while this does not have the provable
approximation factor of the query-dependent data structure, it offers significant improve-
ment in time and space complexity. We give a theoretical analysis and experimental results.
As an application, the query-dependent approach is used for deriving a data structure for
the approximate annulus query problem, which is defined as follows: given an input set S
and two parameters r > 0 and w > 1, construct a data structure that returns for each query
point q a point p e S such that the distance between p and q is at least r/w and at most wr.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction explicitly computing the set of all near neighbors and then

searching it. We refer to this problem as the annulus query

Similarity search is concerned with locating elements
from a set S that are close to a given query q. The query can
be thought of as describing criteria we would like returned
items to satisfy approximately. For example, if a customer
has expressed interest in a product g, we may want to
recommend other similar products. However, we might
not want to recommend products that are too similar,
since that would not significantly increase the probability
of a sale. Among the points that satisfy a near neighbor
condition (similar), we would like to return those that also
satisfy a furthest-point condition (not too similar), without

“ The research leading to these results has received funding from the
European Research Council under the European Union's Seventh Frame-
work Programme (FP7/2007-2013)/ERC grant agreement no. 614331.

* Corresponding author.

E-mail addresses: pagh@itu.dk (R. Pagh), fras@itu.dk (F. Silvestri),
jovt@itu.dk (J. Sivertsen), mska@itu.dk (M. Skala).

http://dx.doi.org/10.1016/].is.2016.07.006
0306-4379/© 2016 Elsevier Ltd. All rights reserved.

problem. We claim that an approximate solution to the
annulus query problem can be found by suitably combin-
ing Locality Sensitive Hashing (LSH), which is an approx-
imation technique commonly used for finding the nearest
neighbor of a query, with an approximation technique for
furthest neighbor, which is the main topic of this paper.
The furthest neighbor problem consists of finding the
point in an input set S that maximizes the distance to a
query point q. In this paper we investigate the approx-
imate furthest neighbor problem in d-dimensional Eucli-
dean space (i.e., #%), with theoretical and experimental
results. We then show how to cast one of our data struc-
tures to solve the annulus query problem. As shown in the
opening example, the furthest neighbor problem has been
used in recommender systems to create more diverse
recommendations [23,24]. Moreover, the furthest neigh-
bor is an important primitive in computational geometry

Please cite this article as: R. Pagh, et al., Approximate furthest neighbor with application to annulus query, Information
Systems (2016), http://dx.doi.org/10.1016/].i5.2016.07.006

www.sciencedirect.com/science/journal/03064379
www.elsevier.com/locate/infosys
http://dx.doi.org/10.1016/j.is.2016.07.006
http://dx.doi.org/10.1016/j.is.2016.07.006
http://dx.doi.org/10.1016/j.is.2016.07.006
mailto:pagh@itu.dk
mailto:fras@itu.dk
mailto:jovt@itu.dk
mailto:mska@itu.dk
http://dx.doi.org/10.1016/j.is.2016.07.006
http://dx.doi.org/10.1016/j.is.2016.07.006
http://dx.doi.org/10.1016/j.is.2016.07.006
http://dx.doi.org/10.1016/j.is.2016.07.006

2 R. Pagh et al. / Information Systems 1 (AEEE) RER-RER

that has been used for computing the minimum spanning
tree and the diameter of a set of points [2,11].

Our focus is on approximate solution because the exact
version of the furthest neighbor problem would also solve
exact similarity search in d-dimensional Hamming space,
and thus is as difficult as that problem [26,3]. The reduc-
tion follows from the fact that the complement of every
sphere in Hamming space is also a sphere. That limits the
hope we may have for an efficient solution to the exact
version, so we consider the c-approximate furthest neighbor
(c-AFN) problem where the task is to return a point x’ with
d(q,x') = max,sd(q,x)/c, with d(x,u) denoting the dis-
tance between two points.

We will pursue randomized solutions having a small
probability of not returning a c-AFN. The success prob-
ability can be made arbitrarily close to 1 by repetition.

We describe and analyze our data structures in Section 2.
We propose two approaches, both based on random projec-
tions but differing in what candidate points are considered at
query time. In the main query-dependent version the candi-
dates will vary depending on the given query, while in the
query-independent version the candidates will be a fixed set.

The query-dependent data structure is presented in
Section 2.1. It returns the c-approximate furthest neighbor,
for any c> 1, with probability at least 0.72. When the
number of dimensions is O(logn), our result requires
O(n'/¢) time per query and O(n?/¢) total space, where n
denotes the input size.! Theorem 7 gives bounds in the
general case. This data structure is closely similar to one
proposed by Indyk [16], but we use a different approach
for the query algorithm.

The query-independent data structure is presented in
Section 2.2. When the approximation factor is a constant
strictly between 1 and +/2, this approach requires 2°@
query time and space. This approach is significantly faster
than the query dependent approach when the dimen-
sionality is small.

The space requirements of our data structures are quite
high: the query-independent data structure requires space
exponential in the dimension, while the query-dependent
one requires more than linear space when ¢ < +/2. How-
ever, we claim that this bound cannot be significantly
improved. In Section 2.3 we show that any data structure
that solves the c-AFN by storing a suitable subset of the
input points must store at least min{n,2%?}—1 data
points when ¢ < v/2.

Section 3 describes experiments on our data structure,
and some modified versions, on real and randomly gen-
erated data sets. In practice, we can achieve approximation
factors significantly below the +/2 theoretical result, even
with the query-independent version of the algorithm. We
can also achieve good approximation in practice with
significantly fewer projections and points examined than
the worst-case bounds suggested by the theory. Our
techniques are much simpler to implement than existing
methods for +/2-AFN, which generally require convex
programming [9,21]. Our techniques can also be extended
to general metric spaces.

! The O() notation omits polylog terms.

Having developed an improved AFN technique we
return to the annulus query problem in Section 4. We
present a sublinear time solution to the approximate
annulus query problem based on combining our AFN data
structure with LSH techniques [14].

A preliminary version of our data structures for c-AFN
appeared in the proceedings of the 8th International Con-
ference on Similarity Search and Applications (SISAP) [22].

1.1. Related work

Exact furthest neighbor: In two dimensions the furthest
neighbor problem can be solved in linear space and loga-
rithmic query time using point location in a furthest point
Voronoi diagram (see, for example, [5]). However, the
space usage of Voronoi diagrams grows exponentially with
the number of dimensions, making this approach
impractical in high dimensions. More generally, an effi-
cient data structure for the exact furthest neighbor pro-
blem in high dimension would lead to surprising algo-
rithms for satisfiability [26], so barring a breakthrough in
satisfiability algorithms we must assume that such data
structures are not feasible. Further evidence of the diffi-
culty of exact furthest neighbor is the following reduction:
Given aset Sc{—1,1}9 and a query vector q e (-1,11% a
furthest neighbor (in Euclidean space) from —q is a vector
in S of minimum Hamming distance to q. That is, exact
furthest neighbor is at least as hard as exact nearest
neighbor in d-dimensional Hamming space, which is also
believed to be hard for large d and worst-case [26].

Approximate furthest neighbor: Agarwal et al. [2] pro-
pose an algorithm for computing the c-AFN for all points in
a set S in time O(n/(c—1)4="2) where n=|S| and
1 < c < 2. Bespamyatnikh [6] gives a dynamic data struc-
ture for c-AFN. This data structure relies on fair split trees
and requires O 1/(c—1)d‘1) time per query and O(dn)
space, with 1<c<?2. The query times of both results
exhibit an exponential dependency on the dimension.
Indyk [16] proposes the first approach avoiding this
exponential dependency, by means of multiple random
projections of the data and query points to one dimension.
More precisely, Indyk shows how to solve a fixed radius
version of the problem where given a parameter r the task
is to return a point at distance at least r/c given that there
exist one or more points at distance at least r. Then, he
gives a solution to the furthest neighbor problem with
approximation factor c+48, where §>0 is a sufficiently
small constant, by reducing it to queries on many copies of
that data structure. The overall result is space O(dn'*!/ CZ)
and query time O(dn”cz), which improved the previous
lower bound when d=Q(logn). The data structure pre-
sented in this paper shows that the same basic method,
multiple random projections to one dimension, can be
used for solving c-AFN directly, avoiding the intermediate
data structures for the fixed radius version. Our result is
then a simpler data structure that works for all radii and,
being interested in static queries, we are able to reduce the
space to O(dn®<).

Methods based on an enclosing ball: Goel et al. [13] show
that a +/2-approximate furthest neighbor can always be
found on the surface of the minimum enclosing ball of S.

Systems (2016), http://dx.doi.org/10.1016/.i5.2016.07.006

Please cite this article as: R. Pagh, et al., Approximate furthest neighbor with application to annulus query, Information

http://dx.doi.org/10.1016/j.is.2016.07.006
http://dx.doi.org/10.1016/j.is.2016.07.006
http://dx.doi.org/10.1016/j.is.2016.07.006

Download English Version:

https://daneshyari.com/en/article/4945151

Download Persian Version:

https://daneshyari.com/article/4945151

Daneshyari.com

https://daneshyari.com/en/article/4945151
https://daneshyari.com/article/4945151
https://daneshyari.com/

