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a b s t r a c t

We study the practical behavior of different algorithms and methods that aim to estimate
the intrinsic dimension (IDim) in metric spaces. Some of themwere specifically developed
to evaluate the complexity of searching in metric spaces, based on different theories
related to the distribution of distances between objects on such spaces. Others were
originally designed for vector spaces only, and have been extended to general metric
spaces. To empirically evaluate the fitness of various IDim estimations with the actual
difficulty of searching in metric spaces, we compare two representatives of each of the
broadest families of metric indices: those based on pivots and those based on compact
partitions. Our conclusions are that the estimators Distance Exponent and Correlation fit
best their purpose.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Similarity search in metric spaces has received much
attention due to its applications in many fields, ranging
from multimedia information retrieval to machine learn-
ing, classification, and searching the Web. While a wealth
of practical algorithms exist to handle this problem, it has
been often noted that some datasets are intrinsically
harder to search than others, no matter which search
algorithms are used. An intuitive concept of “curse of
dimensionality” has been coined to denote this intrinsic
difficulty, but a clear method to measure it, and thus to
predict the performance of similarity searching in a space,
has been elusive.

The similarity between a set of objects U is modeled
using a distance function (or metric) d:U� U↦Rþ [ f0g

that satisfies the properties of triangle inequality, strict
positivity, reflexivity, and symmetry. In this case, the pair
ðU;dÞ is called a metric space [1–4].

In some applications, the metric spaces are of a parti-
cular kind called “vector spaces” of finite explicit or
representational dimension, where the elements consist of
D coordinates of real numbers. In this case, we can use
some Minkowski metric or any other metric appropriate to
the specific case (for instance, the cosine distance) as the
dissimilarity measure between two objects. Many works
exploit the geometric properties of vector spaces, but they
usually cannot be extended to general metric spaces,
where the only available information is the distance
between objects. Since in most cases the distance is very
expensive to compute, the main goal when searching in
metric spaces is to reduce the number of distance eva-
luations. In contrast, vector space operations tend to be
cheaper and the primary goal when searching them is to
reduce the CPU cost or the number of I/O operations
carried out.

Similarity queries are usually of two types. For a given
database SDU with size jSj ¼ n, qAU and rARþ , the range
query ðq; rÞd returns all the objects of S at distance at most r
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from q, formally ðq; rÞd ¼ fxAS; dðx; qÞrrg; whereas the
nearest neighbor query kNNd(q) retrieves the k elements of
S that are closest to q, that is, kNNd(q) is a set such that for
all xAkNNdðqÞ and yAS⧹kNNdðqÞ, dðq; xÞrdðq; yÞ, and
jkNNdðqÞj ¼ k.

A naïve way to answer similarity queries is to compare
all the database elements with the query q and return
those elements that are close enough to q. This brute force
approach is too expensive for real applications. Research
has then focused on ways to reduce the number of dis-
tance computations performed to answer similarity quer-
ies. There has been significant progress around the idea of
building an index, that is, a data structure that allows
discarding some database elements without explicitly
comparing them to q. Moreover, there are some relatively
recent works [5–10] that try to get jointly the goals of
reducing the number of distance evaluations and the
number of I/O operations performed.

In vector spaces with uniformly distributed data, the
curse of dimensionality describes the well-known expo-
nential increase of the cost of all existing search algo-
rithms as the dimension grows. Non-uniformly distributed
vector spaces may be easier to search than uniform ones,
despite having the same explicit dimensionality. The
phenomenon also extends to general metric spaces despite
their absence of coordinates: some spaces are intrinsically
harder to search than others. This has lead to the concept
of intrinsic dimensionality (IDim) of a metric space, as a
measure of the difficulty of searching it. A reliable measure
of IDim has been elusive, despite the existence of several
formulae.

Computing the IDim of a metric space is useful, for
example, to determine whether it is amenable to indexing
at all. If the IDim is too high, then we must just resort to
brute-force solutions or to approximate search algorithms
(which do not guarantee to find the exact answers). Even
when exact indexing is possible, the IDim helps decide
which kind of index to use and how to tune it. For
example, in lower dimension spaces, a pivot-based
method works fine using a small set of pivots; whereas
in higher dimensions we need to use a large set of pivots
[1], which also implies a large amount of memory for the
index. Alternatively, if we do not have enough extra
memory for the index, we can switch to the List of Clusters
[11], which has reasonable performance in high dimension
spending little space in the index.

In this work we aim to empirically study the fitness of
various IDim measures to predict the search difficulty of
metric space searching. Some measures were specifically
developed for metric spaces, based on different theories
related to the distribution of distances between objects.
Others were originally designed for vector spaces and have
then been adapted to general metric spaces. We chose
various synthetic and real-life metric spaces and four
indexing methods that are representatives of the major
families of indices: two based on pivots and two based on
compact partitions. Our comparison between real and
estimated search difficulty yields that Distance Exponent
[12,13] and Correlation [14] are currently the best pre-
dictors in practice, however all the estimators behave
relatively well.

The rest of this paper is organized as follows. In Section
2, we review some relevant issues of IDim estimators for
vector spaces. Next, in Section 3, we survey four methods
for estimating IDim in vector spaces and show how to
adapt them to the metric case. We also include three new
IDim estimators for general metric spaces. The experi-
mental evaluation for the seven methods is presented in
Section 4. We finally draw our conclusions and future work
directions in Section 5. An early version of this work
appeared in [15].

2. Intrinsic dimension estimators for vector spaces

There are several interesting applications where the
data are represented as D-dimensional vectors in RD. For
instance, in pattern recognition applications, objects are
usually represented as vectors [16]. Therefore, data are
embedded in RD, even though this does not imply that its
intrinsic dimension is D.

There are many definitions of IDim. For instance, the
IDim of a given dataset is the minimum number of free
variables needed to represent the data without loss of
information [17]. In general terms, a dataset XDRD has
IDim MrD, if its elements fall completely within an M-
dimensional manifold of RD [18]. Another intuitive notion
is the logarithm of the search cost, as in many cases this
cost grows exponentially with the dimension.

Even in vector spaces, there are many reasons to esti-
mate the IDim of a dataset. Using more dimensions (more
coordinates in the vectors) than necessary can bring sev-
eral problems. For example, the space to store the data
may be an issue. A dataset XDRD with jXj ¼ n requires to
store n� D real coordinates. Instead, if we know that the
IDim of X is MrD, we can map the points to RM and just
store n�M real coordinates. The CPU cost to compute a
distance is also reduced. This can in addition help identify
the important dimensions in the original data. Also, as the
amount of available information increases, compressing
the data storage becomes even more important. Secondly,
as the asymptotic complexity of the algorithms is mono-
tonically increasing with respect to the dataset dimen-
sionality, a dimensionality reduction (to the actual dataset
IDim) can produce an important CPU time reduction. For
instance, in the case of data classification or pattern
recognition, producing reliable classifiers is difficult when
the dataset dimensionality is high (curse of dimensionality
[19]); and according to the theoretical approximation of
statistical learning [20], the classifier generalization cap-
ability depends on the IDim of the space.

There are two approximations to estimate the IDim of a
vector space [16,17], namely, local and global methods. The
local ones make the estimation by using the information
contained in sample neighborhoods, avoiding the data
projection over spaces of lower dimensionality. The global
ones deploy the dataset over an M-dimensional space
using all the dataset information. Unlike the local methods
that only use the information contained in the neighbor-
hood of each data sample, global methods use whole
information of the dataset.
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