
Information Systems 64 (2017) 425–446

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

Resolving inconsistencies and redundancies in declarative process

models

Claudio Di Ciccio

a , ∗, Fabrizio Maria Maggi b , Marco Montali c , Jan Mendling

a

a Vienna University of Economics and Business, Austria
b University of Tartu, Estonia
c Free University of Bozen-Bolzano, Italy

a r t i c l e i n f o

Article history:

Received 15 December 2015

Revised 20 September 2016

Accepted 21 September 2016

Available online 30 September 2016

Keywords:

Process Mining

Declarative Process

Conflict Resolution

Redundant Constraints

a b s t r a c t

Declarative process models define the behaviour of business processes as a set of constraints. Declarative

process discovery aims at inferring such constraints from event logs. Existing discovery techniques ver-

ify the satisfaction of candidate constraints over the log, but completely neglect their interactions. As a

result, the inferred constraints can be mutually contradicting and their interplay may lead to an incon-

sistent process model that does not accept any trace. In such a case, the output turns out to be unusable

for enactment, simulation or verification purposes. In addition, the discovered model contains, in general,

redundancies that are due to complex interactions of several constraints and that cannot be cured us-

ing existing pruning approaches. We address these problems by proposing a technique that automatically

resolves conflicts within the discovered models and is more powerful than existing pruning techniques

to eliminate redundancies. First, we formally define the problems of constraint redundancy and conflict

resolution. Second, we introduce techniques based on the notion of automata-product monoid, which

guarantees the consistency of the discovered models and, at the same time, keeps the most interest-

ing constraints in the pruned set. The level of interestingness is dictated by user-specified prioritisation

criteria. We evaluate the devised techniques on a set of real-world event logs.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The automated discovery of processes is the branch of the pro-

cess mining discipline that aims at constructing a process model

on the basis of the information reported in event data. The un-

derlying assumption is that the recorded events indicate the se-

quential execution of the to-be-discovered process activities. The

compact and correct representation of the behaviour observed in

event data is one of the major concerns of process mining. Process

discovery algorithms are classified according to the type of process

model that they return, i.e., either procedural or declarative. Pro-

cedural process discovery techniques return models that explicitly

describe all the possible executions allowed by the process from

the beginning to the end. The output of declarative process discov-

ery algorithms consists of a set of constraints, which exert condi-

tions on the enactment of the process activities. The possible exe-

∗ Corresponding author. Tel.: +43 1 31336 5222.

E-mail addresses: claudio.di.ciccio@wu.ac.at (C. Di Ciccio), f.m.maggi@ut.ee

(F.M. Maggi), montali@inf.unibz.it (M. Montali), jan.mendling@wu.ac.at

(J. Mendling).

cutions are implicitly established as all those ones that respect the

given constraints. Mutual strengths and weaknesses of declarative

and procedural models are discussed in [1,2] .

One of the advantages of procedural models such as Petri nets

is the rich set of formal analysis techniques available. These tech-

niques can, for instance, identify redundancy in terms of implicit

places or inconsistencies like deadlocks [3] . In turn, similar facil-

ities are not provided for novel declarative modelling languages

like Declare . This is a problem for several reasons. First, we are

currently not able to check the consistency of a generated con-

straint set. Many algorithms that generate Declare models include

in the output those constraints that are individually satisfied in the

log in more than a given number of cases. The interaction of re-

turned constraints is thereby neglected, with the consequence that

subsets of constraints can end up contradicting one another. Sec-

ond, it is currently unclear whether a given constraint set is free

of redundancies. Since there are constraint types that imply one

another, it is possible that the generated constraint sets are par-

tially redundant. The lack of formal techniques for handling these

two issues is unsatisfactory from both a research and a practical

angle. This is also a roadblock for conducting fair comparisons in

user experiments when a Petri net without deadlocks and implicit

http://dx.doi.org/10.1016/j.is.2016.09.005

0306-4379/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.is.2016.09.005
http://www.ScienceDirect.com
http://www.elsevier.com/locate/is
http://crossmark.crossref.org/dialog/?doi=10.1016/j.is.2016.09.005&domain=pdf
mailto:claudio.di.ciccio@wu.ac.at
mailto:f.m.maggi@ut.ee
mailto:montali@inf.unibz.it
mailto:jan.mendling@wu.ac.at
http://dx.doi.org/10.1016/j.is.2016.09.005

426 C. Di Ciccio et al. / Information Systems 64 (2017) 425–446

places is compared with a constraint set of unknown consistency

and redundancy-freedom.

In this paper, we address the need for formal analysis of De-

clare models. We define the notion of an automata-product monoid

as a formal notion for analysing consistency and local minimal-

ity, which is grounded in automata multiplication. Based on this

structure, we devise efficient analysis techniques. Our formal con-

cepts have been implemented as part of a process mining tool that

we use for our evaluation. By analysing event log benchmarks, we

are able to show that inconsistencies and redundancies occur in

process models automatically discovered by state-of-the-art tools.

First, our technique can take such process models as input and

return constraints sets that are consistent. To this end, contra-

dictory subsets are identified and resolved by removing the con-

straints generating the conflict. Second, our technique eliminates

those constraints that do not restrict the behaviour of the process

any further, i.e., that do not convey any meaningful information to

the output. As a consequence, the returned sets are substantially

smaller than the ones provided by prior algorithms, though keep-

ing the expressed behaviour equivalent to the inconsistency-free

process. This paper extends the research presented in our former

publication [4] with a complete and self-consistent definition of

the adopted formal concepts and algorithms. We also provide al-

ternative strategies to be utilised during the redundancy and con-

sistency check, so as to allow for different criteria to prioritise the

constraints during the pruning phase. This is of crucial importance,

since manipulating a declarative process model towards removal

of inconsistencies and redundancies is intrinsically expensive from

a computational point of view. Furthermore, we introduce a com-

plementary technique to further reduce the number of redundan-

cies in the models after the first check. Finally, we broadly extend

the evaluation with an analysis of our implemented approach over

real-world data sets including the event logs provided for the for-

mer editions of the BPI challenge.

The paper is structured as follows. Section 2 illustrates intu-

itively the problems that we tackle with the proposed research

work. Section 3 describes the preliminary notions needed to for-

mally contextualise the challenged issues. Section 4 formally spec-

ifies the problems of inconsistencies and redundancies in detail.

Section 5 defines our formal notion of automata-product monoid,

which offers the basis to formalise the techniques for consistency

and redundancy checking. Section 6 illustrates the results of our

evaluations based on real-world benchmarking data. Section 7 dis-

cusses our contributions in the light of related work. Finally,

Section 8 concludes the paper.

2. Motivation

Declarative process models consist of sets of constraints exerted

on tasks, which define the rules to be respected during the process

execution. A well-established language for modelling declarative

processes is Declare [5,6] . Declare defines a set of default tem-

plates , which are behavioural rules that refer to parameters in or-

der to abstract from tasks. In Declare , e.g., Init (x) is a template im-

posing that a given parametric task x must be the one with which

every process instance starts. End (x) specifies that every process in-

stance must terminate with the given task x . Response (x , y) states

that if task x is carried out, then task y must be eventually exe-

cuted afterwards. Precedence (x , y) imposes that y can only be per-

formed if x has been previously executed.

Let us consider a simple example process having three tasks, a ,

b , and c . By indicating the execution sequence of tasks with their

name, possible enactments that fulfil a process model consisting of

Init (a) and End (c) are: (i) abababc , and (ii) ababac . If we consider

an event log made of the aforementioned execution sequences and

use any declarative discovery algorithm to reveal a declarative pro-

cess model that could have generated them, it would correctly re-

turn a set of constraints including Init (a) and End (c) because they

are always satisfied. However, the set of constraints would include

also (1) Precedence (a , b) and (2) Precedence (a , c) , as well as (3)

Response (a , c) and (4) Response (b , c) : those four constraints hold

true in the event log as well. Nevertheless, if a is already bound

to be the first task to be carried out in every process instance

(Init (a)), clearly no other task can be executed if a is not done be-

fore. Therefore, the first two constraints can be trivially deduced

by Init (a) . They add no information, yet they contribute to use-

lessly enlarge the set of constraints returned to the user as the

outcome of the discovery. By the same line of reasoning, the third

and fourth constraints are superfluous with respect to End (b) . Intu-

itively, this example outlines the problem of redundancy , which is

one of the two challenges that we tackle with this research work:

the objective is to remove from the set of constraints in the dis-

covered process model those ones that do not add information, i.e.,

that are not restricting the process behaviour any further given the

remaining ones.

In the context of declarative process discovery, event logs can

be affected by recording errors or report exceptional deviations

from the usual enactments [7] . In such cases, constraints that were

originally part of the process may be violated in some of the

recorded executions. If discovery algorithms take into account only

those constraints that always hold true in the event log, a mini-

mum amount of noise might already cause several constraints to

be discarded from the returned set [8–10] . To circumvent this is-

sue, declarative discovery algorithms offer the possibility to tune

a so-called support threshold : it specifies the minimum fraction

of cases in which a constraint is fulfilled within the event log to

let such constraint be included in the discovered model. However,

this comes at the price of possibly having conflicts in the model

though: constraints that hold true in a fraction of the event log

above the set threshold can contradict other constraints. In such

a case, the model becomes unsatisfiable, i.e., it exerts conditions

that cannot be met by any possible execution. Such a model would

clearly be to no avail to the discovery intents. This issue outlines

the problem of inconsistencies in the discovered model, which we

challenge in this research paper.

The aim of the presented approach is therefore twofold: given

a discovered declarative process model, we want to (1) remove its

inconsistencies, and (2) remove its redundancies. To pursue these

objectives, we aim at keeping the process behaviour as similar as

possible to the original one when removing inconsistencies, and

retaining the minimum number of constraints that still represent

the same original behaviour while getting rid of the redundancies.

The number of combinations of constraints to test for the opti-

mum of both problems is not tractable in practice, because every

subset of the original constraints set should be confronted with

the others. Our solution instead requires a polynomial number of

checks over constraints to provide a sub-optimal yet effective so-

lution. Furthermore, different criteria can be adopted to express

(1) the desired behavioural closeness and (2) the preferability of

constraints to be retained. To this extent, our solution envisages

(1) the relaxation of conditions exerted by the contradicting con-

straints and (2) different ranking criteria for constraints, respec-

tively.

3. Declarative process modelling and mining

This section defines the formal background for our research

problem. In particular, we introduce and revisit the concepts of

event logs and of declarative process modelling and mining.

Notational conventions. We adopt the following notations. Given

a set X , (i) the multi-set of X is denoted as M (X) ; (ii) the

Download English Version:

https://daneshyari.com/en/article/4945170

Download Persian Version:

https://daneshyari.com/article/4945170

Daneshyari.com

https://daneshyari.com/en/article/4945170
https://daneshyari.com/article/4945170
https://daneshyari.com

