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cplint is a suite of programs for reasoning and learning with Probabilistic Logic 
Programming languages that follow the distribution semantics. In this paper we describe 
how we have extended cplint to perform causal reasoning. In particular, we consider 
Pearl’s do calculus for models where all the variables are measured. The two cplint
modules for inference, PITA and MCINTYRE, have been extended for computing the effect of 
actions/interventions on these models. We also executed experiments comparing exact and 
approximate inference with conditional and causal queries, showing that causal inference 
is often cheaper than conditional inference.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Identifying cause-effect relationships among variables or events is one of the main objectives of science. How to extract 
such relationships from data and how to use them to make predictions have been fiercely debated. The connection between 
correlation and causation is particularly subtle and has mislead many authors. The famous sentence “correlation does not 
imply causation” is often used in statistics to warn against confounding the two. A correlation between two variables means 
that there is an association between them, but it does not imply that one causes the other. As a matter of fact, it could 
happen that there is a third factor that causes both producing the correlation.

Pearl in [1] showed that it is possible to represent causality by means of graphical models. Bayesian networks, in partic-
ular, are directed acyclic graphs that represent probabilistic dependencies between variables in a very intuitive way. In order 
to represent causality, Pearl [1] extended them into causal Bayesian networks, i.e. Bayesian networks where an arc from a 
node A to a node B means that A directly causally influences B . Computing the effect of actions can be performed in causal 
Bayesian networks by removing the edges that point to the nodes that represent the actions. The probability distribution of 
some variables E when performing action A, indicated as P (E|do(A)), denotes the effect of actions and is at the basis of 
Pearl’s do calculus. This distribution can be computed by probabilistic inference on the mutilated network.

Representing probabilistic information in Logic Programming has been pursued by many authors. The distribution se-
mantics [2] is one of the most widely used semantics for Probabilistic Logic Programming (PLP). This semantics is at the 
basis of many languages, such as Independent Choice Logic [3], PRISM [4], Logic Programs with Annotated Disjunctions 
(LPADs) [5] and ProbLog [6].

✩ This paper is part of the Virtual special issue on Probabilistic Logic Programming 2016, edited by James Cussens and Arjen Hommersom.
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CP-logic [7] is a PLP language for causal reasoning. CP-logic programs (or CP-theories) are syntactically very similar to 
LPADs and they are given a semantics based on probability trees that represent possible courses of events. The authors 
proved that their semantics is suitable for representing causation and the effects of causal laws. For legal CP-logic programs, 
the semantics of LPADs and that of CP-logic coincide.

The authors in [7] also showed that the effect of actions in do calculus style can be computed from CP-theories by 
modifying the theory itself and computing the probability of the query from the modified theory. The modification involves 
adding facts for positive actions or removing (instantiations) of rules for negative actions.

In this paper we discuss how we implemented this process in practice in cplint,1 a suite of programs for reasoning 
and learning in PLP. The two main inference modules of cplint, PITA and MCINTYRE, have been suitably extended for 
performing the do calculus, thus computing the effects of actions. PITA performs exact inference by knowledge compila-
tion while MCINTYRE performs approximate inference by sampling so their extensions allow to perform both exact and 
approximate causal inference.

Like [7], we assume that the causal structure of the model is fully known. Pearl’s do calculus is more general, as it allows 
to compute the effect of actions also on models with unknown variables. Exploiting the full power of the do calculus in PLP 
is a very interesting direction for future work.

We present two domains to illustrate causal reasoning in PLP: the famous Simpson’s paradox and a viral marketing 
problem. We have also conducted experiments on the latter with an increasing number of members of the social network 
and compared exact and approximate conditional inference with exact and approximate causal inference. The results show 
that performing causal inference is often much less expensive than conditional inference, as expected, since actions remove 
dependencies among random variables.

The paper is organized as follows. Section 2 introduces preliminaries about distribution semantics, causal reasoning 
and PLP. Section 3 and Section 4 describe the modules PITA and MCINTYRE respectively, together with their extension 
for causal reasoning; Section 5 shows some notable examples of causal inference, namely the Simpson’s paradox and the 
viral marketing problem. Section 6 illustrates related work. Section 7 reports on the experiments performed and Section 8
concludes the paper.

2. Preliminaries

2.1. Probabilistic Logic Programming

The field of PLP has seen many different proposals for integrating logic programming and probability theory. We here 
concentrate on the Distribution Semantics (DS) [2] because it is one of the most widely used. The basic idea of the DS 
is that a probabilistic logic program defines a probability distribution over a set of normal logic programs (called worlds) 
that is extended to a joint probability of programs and truth values of a ground query. The probability of the query is then 
obtained from this joint distribution by marginalization.

We present the DS for LPADs for their general syntax. LPADs are sets of disjunctive clauses in which each atom in the 
head is annotated with a probability.

Formally a Logic Program with Annotated Disjunctions (LPADs) [5] consists of a finite set of annotated disjunctive clauses. 
An annotated disjunctive clause Ci is of the form

hi1 : �i1; . . . ;hini : �ini ← bi1, . . . ,bimi .

In such a clause the semicolon stands for disjunction, hi1, . . .hini are logical atoms and bi1, . . . , bimi are logical literals, 
�i1, . . . , �ini are real numbers in the interval [0, 1] such that 

∑ni
k=1 �ik ≤ 1. If 

∑ni
k=1 �ik < 1, the head of the annotated dis-

junctive clause implicitly contains an extra atom null that does not appear in the body of any clause and whose annotation 
is 1 − ∑ni

k=1 �ik .

Example 1. The following LPAD T from [8] encodes a very simple model of the development of an epidemic or a pandemic:

C1 = epidemic : 0.6; pandemic : 0.3 ← flu(X), cold.

C2 = cold : 0.7.

C3 = flu(david).

C4 = flu(robert).

An epidemic or a pandemic may arise if somebody has the flu and the climate is cold. We are uncertain whether the climate 
is cold and we know for sure that David and Robert have the flu.

We discuss the DS for the case in which the program does not contain function symbols so that its Herbrand base is 
finite.2 An atomic choice is a selection of the k-th atom for a grounding Ciθ j of a probabilistic clause Ci and is represented by 

1 http :/ /sites .unife .it /ml /cplint.
2 For the distribution semantics for programs with function symbols see [2,9,10].
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