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Since coarse(ned) data naturally induce set-valued estimators, analysts often assume 
coarsening at random (CAR) to force them to be single-valued. Focusing on a coarse 
categorical response variable and a precisely observed categorical covariate, we first re-
illustrate the impossibility to test CAR and then contrast it to another type of coarsening 
called subgroup independence (SI). It turns out that – depending on the number of 
subgroups and categories of the response variable – SI can be point-identifying as CAR, but 
testable unlike CAR. A main goal of this paper is the construction of the likelihood-ratio 
test for SI. All issues are similarly investigated for the here proposed generalized versions, 
gCAR and gSI, thus allowing a more flexible application of this hypothesis test. The results 
are illustrated by the data of the German Panel Study “Labour Market and Social Security” 
(PASS).

© 2017 Elsevier Inc. All rights reserved.

1. Introduction: the problem of testing coarsening assumptions

Traditional statistical methods dealing with missing data (e.g. EM algorithm or imputation techniques) require identi-
fiability of parameters, which frequently tempts analysts to make the missing at random (MAR) assumption (cf. e.g. [17]) 
simply for pragmatic reasons without justifications in substance (cf. e.g. [15]). Since MAR is not testable without strong ad-
ditional assumptions (e.g. [18]) and wrongly including MAR may induce a substantial bias, this way to proceed is especially 
alarming.

Beside missing data, there are further kinds of deficient data, such as data affected by measurement errors/misclassifi-
cation (cf. e.g. [11]) or coarse(ned) data (cf. e.g. [12]) where only subsets of the complete data sample space are observed, 
known to include the unobserved, precise value.1 Throughout the paper, we consider coarse data, including missing data 
as special case, thus addressing partially observed values, explicitly excluding the erroneous observation of a variable, 
disregarding measurement errors/misclassification. For instance, coarse data may arise in data sets where coarsening is 

✩ This paper is part of the Virtual special issue on Soft methods in probability and statistics, edited by Barbara Vantaggi, Maria Brigida Ferraro, Paolo 
Giordani. A preliminary version of this paper was presented at the 8th Conference on Soft Methods in Probability and Statistics (SMPS) in Rome, September, 
12–14, 2016 [25].
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1 When dealing with coarse data, it is important to distinguish epistemic data imprecision considered here, i.e. incomplete observations due to an imperfect 
measurement process, from ontic data imprecision (cf. [5]).
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deliberately applied as anonymization technique or matched data sets with not completely identical categories. In the con-
text of coarse data, the coarsening at random (CAR) (cf. [12]) assumption is the analogue of MAR. Although the impossibility 
of testing CAR is already known from literature (cf. e.g. [14]), providing an intuitive insight into this point will be a first 
goal of our paper. Apart from CAR, we focus on another, in a sense dual, assumption that we called subgroup independence
(SI) in [22] and elaborate the substantial difference between CAR and SI with regard to testability.

Our argumentation is based on the maximum likelihood estimators obtained under the specific assumptions in focus. 
There is already a variety of maximum likelihood approaches for incomplete data. While some rely on optimization strate-
gies, as for instance maximax or maximin, to force a single-valued result (cf. e.g. [10], [13]), others end up with set-valued 
results (cf. e.g. [3], [16], [22]). A general view is given by Couso and Dubois [6], distinguishing between different types of 
likelihoods, the visible, the latent and the total likelihood. Here, we use the cautious approach developed in [22], which 
refers to the latent likelihood and is – just as e.g. [19,8] (in the context of misclassification) and [28] – strongly influenced 
by the methodology of partial identification (cf. [18]). Thus, according to the spirit of partial identification, instead of being 
forced to make often untenable, strict assumptions, as CAR or SI, to give an answer to the research question at all, we can 
explicitly make use of in practice more realistic partial knowledge about the incompleteness, which would have to be left 
out of considerations if traditional approaches were used. For this purpose, we use an observation model as a powerful 
medium to include the available knowledge into the estimation problem. By considering generalized versions of the strict 
assumptions in focus, which we call gCAR and gSI, we can express this knowledge in a flexible and careful way. This means 
that we are no longer restricted to formalize the very specific types of coarsening assumptions, but can incorporate (even 
partial) knowledge about arbitrary dependencies of the coarsening on the values of some variables, which turns out to be 
also beneficial in the context of testing.

Throughout the paper, we refer to the case of a coarse categorical response variable Y and a precisely observed categor-
ical covariate X , but the results may be easily formulated in terms of cases with more than one categorical covariate. For 
sake of conciseness, the example refers to the case of a binary Y , where coarsening corresponds to missingness, but the 
framework is also applicable in the general categorical setting.

For this categorical setting, we characterize cases where SI makes parameters not only identifiable, but is also testable. 
Besides the investigation of the testability of SI, a main contribution of this paper is the construction of the likelihood-ratio 
test for this assumption. For this purpose, we give the hypotheses, illustrate the sensitivity of the test statistic with regard 
to the deviation from the null hypothesis and study the asymptotic distribution of the test statistic to obtain a decision rule 
in dependence of the significance level. Straightforwardly, a test for a specific pattern of gSI is constructed.

Our paper is structured as follows: In Section 2 we introduce the technical framework and the running example based 
on the German Panel Study “Labour Market and Social Security” (PASS), which we also use for the illustration of both 
assumptions, CAR and SI, as well as gCAR and gSI, in Section 3. After sketching the crucial argument of identifiability 
issues and our estimation method as well as showing how the generally set-valued estimators may be refined by assuming 
CAR/gCAR or SI/gSI in Section 4, the obtained estimators are used to discuss the testability of both assumptions in Section 5. 
The likelihood-ratio test for SI is developed and then illustrated for the running example in Section 6, where the generalized 
view on subgroup independence is used to extend this hypothesis test to a more flexible version, including a test on partial 
information, in Section 7. All results of this paper are given for a general categorical setting, but the running example 
refers to the illustrative case of binary data. To emphasize the general applicability of our approach, we briefly discuss 
further examples in Section 8, also addressing potential limitations. Finally, Section 9 concludes with a summary and some 
additional remarks.

2. Coarse data: the basic viewpoint

Before we discuss the running example, let us explicitly formulate the technical framework in which our discussion of 
the coarsening assumptions, the estimation of parameters and the construction of the likelihood-ratio test is embedded. We 
approach the problem of coarse data in our categorical setting by distinguishing between a latent and an observed world: 
Let (x1, y1), . . . , (xn, yn) be a sample of n independent realizations of a pair (X, Y ) of categorical random variables with 
sample space �X × �Y . Our basic goal consists of estimating the probabilities πxy = P (Y = y|X = x), where Y is regarded 
as response variable and X as covariate. Since the values of Y unfavorably can be observed partially, i.e. subsets of �Y

instead of single elements may be observed, this variable is part of the latent world. Instead, we only observe a sample 
(x1, y1), . . . , (xn, yn) of n independent realizations of the pair (X, Y), where the random object Y with sample space 
�Y = P(�Y ) \ {∅} constitutes the observed world. A connection between both worlds, and thus between the probabilities 
πxy and pxy = P (Y = y|X = x), is established via an observation model, governed by the coarsening parameters qy|xy =
P (Y = y|X = x, Y = y) with y ∈ �Y , x ∈ �X and y ∈ �Y . Throughout the paper, we not only assume that the coarsening 
depends on the individual i (i = 1, . . . , n) via the values x and y exclusively, but also require distinct parameters in the 
sense of Rubin (cf. e.g. [17]) as well as error-freeness,2 i.e. y � y, explicitly excluding the case of misclassification.

An essential part of our argumentation is based on comparing the dimensions of the parameter space of the latent world 
�lat and the parameter space of the observed world �obs . While θlat ∈ �lat describes the latent variable distribution πxy

2 This implies that Y is a selector of Y (in the sense of e.g. [20, p. 43]).
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