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There have been a number of proposals for measuring inconsistency in a knowledgebase 
(i.e. a set of logical formulae). These include measures that consider the minimally 
inconsistent subsets of the knowledgebase, and measures that consider the paraconsistent 
models (3 or 4 valued models) of the knowledgebase. In this paper, we present a new 
approach that considers the amount by which each formula has to be weakened in order 
for the knowledgebase to be consistent. This approach is based on ideas of knowledge 
merging by Konienczny and Pino-Perez. We show that this approach gives us measures 
that are different from existing measures, that have desirable properties, and that can 
take the significance of inconsistencies into account. The latter is useful when we want 
to differentiate between inconsistencies that have minor significance from inconsistencies 
that have major significance. We also show how our measures are potentially useful in 
applications such as evaluating violations of integrity constraints in databases and for 
deciding how to act on inconsistency.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Understanding the nature of inconsistency is an important topic if we are to develop autonomous systems that are able 
to behave intelligently with conflicting information. Although the early work of Grant in [10] showed more than 30 years 
ago that it is possible to compare inconsistent sets of formulae, the great amount of research on measuring inconsistency 
occurred in the past decade. It turns out that there are different reasonable ways of measuring the inconsistency of a 
knowledgebase; these measures tend to be incompatible with one another in the sense that one measure assigns a larger 
inconsistency value to knowledgebase � than to �′ while another does not.

The purpose of this paper is to introduce several inconsistency measures based on model distance. We work in proposi-
tional logic and assume that a knowledgebase contains only consistent formulae (i.e. each individual formula is consistent 
though the set of formulae may be inconsistent). This is a reasonable assumption as portions of conflicting information are 
typically consistent. However, we note that every inconsistent formula (other than the special case ⊥) requires a conjunc-
tion; such a formula can always be split into consistent fragments. Every consistent formula has at least one model. We 
think of each model as a point in Euclidean space. The models of a knowledgebase are exactly the intersection of the set of 
models for each formula. When the knowledgebase is inconsistent, this intersection is empty.

In our method we use distance measures to measure the distances between models (points in space). The idea of our 
method is to dilate the points representing the models to regions of space in a minimal way so that the intersection of these 

E-mail address: anthony.hunter@ucl.ac.uk (A. Hunter).

http://dx.doi.org/10.1016/j.ijar.2016.04.004
0888-613X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2016.04.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:anthony.hunter@ucl.ac.uk
http://dx.doi.org/10.1016/j.ijar.2016.04.004


JID:IJA AID:7893 /FLA [m3G; v1.175; Prn:2/05/2016; 9:07] P.2 (1-24)

2 J. Grant, A. Hunter / International Journal of Approximate Reasoning ••• (••••) •••–•••

regions is no longer empty. Our various proposals count different aspects of these dilations to come up with measures of 
inconsistency. Furthermore, this approach lends itself to assigning weights to atoms thereby capturing better the significance 
of inconsistencies and provides new insight into the nature of inconsistency. For applications, it offers a better account for 
distances in the significance of parts of the knowledge that may be inconsistent. We illustrate how the new measures are 
potentially valuable tools for applications by considering violations of integrity constraints in databases.

The plan of this paper is as follows: (Section 2) We present the basic definitions and terminology; (Section 3) We define 
distance measures; (Section 4) We present the dilation of formulae; (Section 5) We present our definitions for measuring 
inconsistency using distance measures; (Section 6) We present our definitions for measuring information in inconsistent 
information; (Section 7) We show how weighting and costing can be used to take into account the significance of the 
information; (Section 8) We apply our approach to measure violations of integrity constraints; (Section 9) We compare our 
distance-based measures with several existing measures; (Section 10) We conclude the paper.

This paper is an extended version of [9]. We augment that paper by providing a systematic analysis of distance-based 
measures in terms of general properties of inconsistency measures, by showing how distance-based measures can be used 
for measuring information, by providing coverage of significance in terms of cost functions and cost rankings, and by pro-
viding a systematic comparison with key proposals for measures of inconsistency.

2. Preliminaries

We assume a propositional language L of formulae composed of a finite set of atoms A = {a1, . . . , an} as well as the 
logical connectives ∧, ∨, ¬, and the punctuation symbols ( and ). Instead of subscripts for a we will often use consecutive 
letters; for instance (a, b, c) instead of (a1, a2, a3). A literal is an atom or a negated atom. We use φ and ψ for arbitrary 
formulae and α and β for literals. The set of atoms used on the composition of a formula φ is given by the function 
Atoms(φ). For example, Atoms(¬a ∧ (b ∨ (¬¬c ∧ d))) = {a, b, c, d}.

A knowledgebase � is a finite set of consistent formulae. We let � denote the classical consequence relation. Logical 
equivalence is defined in the usual way: � ≡ �′ iff � � �′ and �′ � �. We find it useful to define also a stronger notion 
of equivalence as follows: knowledgebase � is bijection-equivalent to knowledgebase �′ , denoted � ≡b �′ iff there is a 
bijection f : � → �′ such that for all φ ∈ �, φ is logically equivalent to f (φ). For example, {a, b} is logically equivalent but 
not bijection-equivalent to {a ∧ b}. We write R≥0 (resp. R+) for the set of nonnegative (resp. positive) real numbers and K
for the set of all knowledgebases.

Given a language L we can assume an arbitrary sequence for the atoms A, say (a1, . . . , an). Using this sequence of 
atoms, a model (i.e. an interpretation) is a sequence of 0s and 1s, written (b1, . . . , bn) where 0 means false and 1 means 
true for the corresponding atom. For φ ∈L, Models(φ) denotes the set of interpretations for which φ is true using the usual 
evaluation of formulae in classical logic. For a knowledgebase �, Models(�) denotes the set of interpretations for which 
every φ ∈ � is true. So if � = {φ1, . . . , φn}, then Models(�) = Models(φ1) ∩ .. ∩ Models(φn)). We use ML to denote the set 
of models for the language L (i.e. ML contains the 2n sequences of (b0, . . . , bn) of 0s and 1s).

Often, instead of writing an interpretation as a sequence of 0s and 1s, we will write it as the (unique) binary number 
b1 . . .bn (with leading 0s kept for easy readability). For example, if A = {a1, a2, a3} and we assume the sequence of atoms 
(a1, a2, a3), then ML = {000, 001, 010, 011, 100, 101, 110, 111}. Each interpretation can also be represented by a formula. 
For example, 101 can be represented by the formula a1 ∧ ¬a2 ∧ a3.

We introduce a couple of subsidiary functions to analyse interpretations. For an interpretation m, let Digiti(m) return the 
ith digit of m (e.g. Digit2(1010) = 0), and let Atomi(m) return the atom corresponding to the ith digit (e.g. if we assume the 
sequence of atoms (a, b, c, d), then Atom2(1010) = b).

We define the set of minimal inconsistent subsets of �, denoted MI(�), as follows (where for a set of formulae �, � � ⊥
denotes that � is inconsistent, and � �⊥ denotes that � is consistent).

MI(�) = {� | � ⊆ � and � � ⊥ and for all �′ ⊂ �,�′ � ⊥}
Any formula not involved in an inconsistency of a knowledgebase (i.e. it is not in a minimal inconsistent subset of the 
knowledgebase) is called a free formula. Thus the set of free formulae of a knowledgebase � is defined as follows.

Free(�) = {α ∈ � | α /∈
⋃

MI(�)}
A more restricted notion than that of a free formula is the following notion: A formula α is a safe formula in a knowledge-
base � when α has no atom in common with any other formula in �. Hence, the set of safe formulae is defined as follows. 
(Note that the usual definition of safe formula requires that α be consistent. We do not need this condition because our 
definition for a knowledgebase given above requires every formula in a knowledgebase to be consistent.)

Safe(�) = {α ∈ � | Atoms(α) ∩ Atoms(� \ {α}) = ∅}
A safe formula cannot be involved in any inconsistency; hence every safe formula is free. However, a formula may be 

free but not safe: for example, a tautology that contains an atom that is also in another formula.
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