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The motivation for this paper is the integer linear programming approach to learning the 
structure of a decomposable graphical model. We have chosen to represent decomposable 
models by means of special zero–one vectors, named characteristic imsets. Our approach 
leads to the study of a special polytope, defined as the convex hull of all characteristic 
imsets for chordal graphs, named the chordal graph polytope. In this theoretical paper, we 
introduce a class of clutter inequalities (valid for the vectors in the polytope) and show that 
all of them are facet-defining for the polytope. We dare to conjecture that they lead to a 
complete polyhedral description of the polytope. Finally, we propose a linear programming 
method to solve the separation problem with these inequalities for the use in a cutting 
plane approach.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction: explaining the motivation

Decomposable models are fundamental probabilistic graphical models [16]. A well-known fact is that elegant mathematical 
properties of these structural models form the theoretical basis of the famous method of local computation [6]. Decompos-
able models, which are described by chordal undirected graphs, can be viewed as special cases of Bayesian network models 
[19], which are described by directed acyclic graphs.

Two traditionally separate disciplines in probabilistic graphical models are learning and inference. Structure learning is 
determining the graphical model, represented by a graph, on the basis of observed statistical data. Inference in Bayesian 
network models has two phases. The first one is transformation of the (learned) directed acyclic graph into a junction 
tree, which can be viewed as a representative of a decomposable model. The second phase in inference is proper local 
computation (of conditional probabilities) in a junction tree. The motivation for the present paper is the idea to merge 
structural learning with the junction tree construction in one step, which basically means direct learning the structure of a 
decomposable model on basis of data.

There are various methods for learning decomposable model structure, most of them being specializations of the methods 
for learning Bayesian network structure [18]. There are methods based on statistical conditional independence tests like the 
PC algorithm [23] or MCMC simulations [11]. This particular paper deals with a score-based approach, where the task is to 
maximize some additively decomposable score, like the BIC score [21] or the BDeu score [12]. There are some arguments in 

✩ This paper is part of the Virtual special issue on the Eighth International Conference on Probabilistic Graphical Models, Edited by Giorgio Corani, 
Alessandro Antonucci, Cassio De Campos.

* Corresponding author.
E-mail addresses: studeny@utia.cas.cz (M. Studený), james.cussens@york.ac.uk (J. Cussens).

http://dx.doi.org/10.1016/j.ijar.2017.06.001
0888-613X/© 2017 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2017.06.001
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:studeny@utia.cas.cz
mailto:james.cussens@york.ac.uk
http://dx.doi.org/10.1016/j.ijar.2017.06.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijar.2017.06.001&domain=pdf


260 M. Studený, J. Cussens / International Journal of Approximate Reasoning 88 (2017) 259–281

favour of this approach in comparison with the methods based on statistical tests. Specifically, the study in [29] indicates 
that some classes of domain models cannot be learned by procedures that modify the graph structure by one edge at a 
time.

We are interested in the integer linear programming (ILP) approach to structural learning of decomposable models. The 
idea behind this approach is to encode graphical models by certain vectors with integer components in such a way that 
the usual scores become linear or affine functions of the vector representatives. There are several ways to encode Bayesian 
network models; the most successful one seems to be to encode them by family-variable vectors as used in [14,7,1]. On 
the other hand, since the present paper deals with learning decomposable models we have intentionally chosen to encode 
them by different vector representatives, called characteristic imsets; these vectors have also been applied in the context of 
learning Bayesian network models in [13] and [26]. This mode of representation leads to an elegant and unique way of 
encoding decomposable models which we believe is particularly suitable for structure learning of these models.

Let us note that two recent conference papers have also been devoted to ILP-based learning of decomposable models, 
but they use different binary encodings of the models. More specifically, Sesh Kumar and Bach [22] used special codes for 
junction trees of the graphs, while Pérez et al. [20] encoded certain special coarsenings of maximal hyper-trees. Moreover, 
the goal in both these papers was learning a specifically restricted class of decomposable models (namely, all cliques have 
the same prescribed size and the same holds for separators) unlike in this theoretical paper, which we hope to be the first 
step towards a general ILP method for learning decomposable models.

Two other recent papers devoted to structure learning of decomposable models also used encodings of junction trees. 
Corander et al. [5] expressed the search space in terms of logical constraints and used constraint satisfaction solvers. Even 
better running times have been achieved by Kangas et al. [15], who applied the idea of decomposing junction trees into 
subtrees, which allowed them to use the method of dynamic programming. We note that the junction tree representation 
is closely related to the (superset) Möbius inversion of the characteristic imset we mention in Section 6.1.

Our approach leads to the study of the geometry of a polytope defined as the convex hull of all characteristic imsets for 
chordal graphs (over a fixed set of nodes N), with the possible modification that a clique size limit is given. This polytope 
has already been dealt with by Lindner [17] in her thesis, where she derived some basic observations on the polytope. For 
example, she mentioned that a complete facet description of the polytope with cliques size limit two, which corresponds to 
learning undirected forests, can be derived. She also identified some non-trivial inequalities for the polytope with no clique 
size limit. Being inspired by Lindner we name this polytope the “chordal graph characteristic imset polytope”, but abbreviate 
this to the chordal graph polytope.

In this paper, which is an extended version of a proceedings paper [25], we assume that the reader is familiar with basic 
concepts of polyhedral geometry, as presented in numerous textbooks on this topic; for example in [2] or [28]. We present 
a complete facet description of the polytope where |N| ≤ 4 and mention the case |N| = 5, where the facet description is 
also available. We have succeeded in classifying all facet-defining inequalities for this polytope in these cases. What we 
found out is that, with the exception of a natural lower bound inequality, there is a one-to-one correspondence between the 
facet-defining inequalities and the clutters (alternatively named antichains or Sperner families) of subsets of the variable set N
(i.e. of the set of nodes) containing at least one singleton; so we call these clutter inequalities.

This establishes a sensible conjecture about a complete polyhedral description of the polytope (with no clique size limit). 
We prove that every clutter inequality is both valid and facet-defining for the polytope. We also tackle an important separa-
tion problem: that is, given a non-integer solution to a linear programming (LP) relaxation problem, find a clutter inequality 
which (most) violates the current solution.

The structure of the paper
Basic concepts are recalled in Section 2, where the concept of a chordal graph polytope is introduced. Section 3 reports 

on the facet description of this polytope in the case of at most five nodes, which was found computationally. The clutter 
inequalities are defined and illustrated by a couple of simple examples in Section 4. Our completeness conjecture is then 
formulated in Section 5; various other versions of clutter inequalities are given in Section 6. In Section 7 we present the 
idea of the proof of their validity for any vector in the chordal graph polytope. The main result of the paper saying that 
every clutter inequality is facet-defining for the polytope is presented in Section 8. Section 9 is devoted to a sub-problem 
of finding a suitable clutter inequality in the context of the cutting plane method. A brief report on a small preliminary 
empirical study is given in Section 10. Important open tasks are recalled in Conclusions, which is Section 11. The proofs of 
most observations have been put in the Appendix to make the paper smoothly readable.

2. Basic concepts

Let N be a finite set of variables; assume that n := |N| ≥ 2 to avoid the trivial case. In the statistical context, the elements 
of N correspond to random variables, while in the graphical context they correspond to nodes of graphs.

2.1. Some conventional notation and terminology

The symbol ⊆ will be used to denote non-strict set inclusion of unlike ⊂, which will serve to denote strict inclusion: 
S ⊂ T means S ⊆ T and S �= T . The power set of N will be denoted by P(N) := {S : S ⊆ N}.
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