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We present an algorithm for estimating bounds on causal effects from observational data 
which combines graphical model search with simple linear regression. We assume that 
the underlying system can be represented by a linear structural equation model with 
no feedback, and we allow for the possibility of latent confounders. Under assumptions 
standard in the causal search literature, we use conditional independence constraints to 
search for an equivalence class of ancestral graphs. Then, for each model in the equivalence 
class, we perform the appropriate regression (using causal structure information to 
determine which covariates to adjust for) to estimate a set of possible causal effects. Our 
approach is based on the IDA procedure of Maathuis et al. [17], which assumes that all 
relevant variables have been measured (i.e., no latent confounders). We generalize their 
work by relaxing this assumption, which is often violated in applied contexts. We validate 
the performance of our algorithm in simulation experiments.

© 2017 Published by Elsevier Inc.

1. Introduction

It is well known that regression estimates for causal effects will be biased unless a variety of conditions on the data 
are satisfied; methods which correct for confounding by covariate adjustment rely on facts about the causal structure of 
the system under study (e.g., whether all the relevant variables have been measured and how the measured covariates 
are causally linked to the variables of interest). Maathuis et al. [17] provide a good overview and explanation of this idea; 
see also [7] for related analysis. Roughly speaking, regressing Y on X while controlling for additional covariates does not 
produce an unbiased estimate of the effect of intervening on X unless the additional covariates account for any possible 
confounding of X and Y . In the language of causal graphs, the covariates must block all causal pathways from variables 
(measured or not) which are causes of both X and Y and the covariates should not include effects of X . The conditions 
under which regression can produce an unbiased estimate of a causal effect can be readily translated into conditions on an 
appropriate causal graphical model [21].

The method proposed here combines techniques from automated causal search and regression to estimate causal effects 
(also called intervention effects) from observational data. In particular, the algorithms described in Section 4 estimate causal 
effects even when there are relevant unmeasured variables (i.e., “latent confounding” or “causal insufficiency”). The method 
is based on the one developed by Maathuis et al. [17], which has been fruitfully applied in the context of genetics research 
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[16,32]. The IDA (“Intervention when the DAG is Absent”) algorithm of Maathuis et al. is consistent under a set of assump-
tions which includes causal sufficiency: the assumption that no variables which are common direct causes of at least two 
measured variables are unmeasured. Importantly, IDA is feasible in high-dimensional settings, where sample sizes are small 
but the number of covariates is very large. In their genetics applications there are more than 4000 variables, and the goal 
is to find variables which are likely strong regulators (causes) of some chosen variable of interest in order to prioritize gene 
knock-out experiments. In the data which is typical in the social sciences and many areas of biomedical research, the as-
sumption of causal sufficiency is often unwarranted. Even genome-wide expression data may be causally insufficient if there 
are unmeasured factors like proteins which act as common causes of multiple gene expressions. Our procedure is consistent 
in the presence of latent confounders and is feasible for large numbers of variables. Note that the procedure presented 
here can also be considered an alternative to causal estimation techniques based on propensity scores (e.g., [26,14]). While 
adapting propensity score techniques to high-dimensional settings is an active area of research (e.g., [2]), it is typical to as-
sume unconfoundedness (a.k.a. “strong ignorability”).1 Our approach dispenses with this assumption, but as a consequence 
some effects will not be identifiable with our method, and in other cases we may produce bounds rather than a single 
point estimate. On the other hand, instrumental variables methods are a popular approach to estimating causal effects in 
possibly confounded settings. In addition to the various statistical difficulties with IV methods like two stage least squares 
(e.g., “weak instrument” issues), there is a more fundamental difficulty to data-driven IV estimation: instrumental variable 
analysis requires knowing that a potential instrument satisfies the exclusion restriction, which is not in general testable. IV 
methods are not, therefore, feasible to implement in data-driven, high-dimensional settings without substantial knowledge 
of causal mechanisms.

Judea Pearl and his collaborators provide techniques for calculating the outcomes of interventions when the true causal 
structure (i.e., true causal graph) is known (e.g., [34,28]). These results relate to the general conditions for “back-door ad-
justment” and “front-door adjustment” described in [21]. The back-door criterion is a graphical criterion that is sufficient 
for adjustment in the following sense: if a set of variables satisfies the back-door criterion for a given graph, then condi-
tioning on that set is sufficient for estimating intervention effects from observed distributions. Maathuis and Colombo [15]
generalize the back-door criterion to different types of graphical objects, and their result will play an instrumental role in 
the algorithms we propose. In order to estimate intervention effects via (generalized) back-door adjustment from data, the 
researcher must be able to identify the set of covariates which satisfy the (generalized) back-door criterion. To determine 
which variables satisfy this condition without substantial background causal knowledge, we use (variations of) an auto-
mated causal search algorithm called FCI [31,38]. Our procedure is closely related to the work of Hyttinen et al. [11], and 
we discuss that method in Section 4.

One alternative approach to estimating causal effects is worth mentioning here. Algorithms which learn latent variable 
LiNGAM models [10,13,8,33] allow for the possibility of unmeasured variables. These algorithms exploit assumptions about 
the causal structure (assumed to be structural equation models which are acyclic, linear, and which have non-Gaussian 
error terms) to estimate graphical structure and some estimate causal strength parameters simultaneously. See also [9,27]
for related Bayesian procedures. One substantial benefit to these algorithms is that they can often identify a unique model 
or a smaller equivalence class of models than the FCI algorithm can. Unfortunately, computational complexity makes these 
algorithms mostly infeasible in applied contexts when there are more than a few variables and the sample sizes required 
are unrealistic for many applications. Furthermore, these algorithms generally require that the researcher stipulates the 
number of (possible) latent variables explicitly; the approach proposed here is more general in that it does not make any 
assumptions about the number of (possible) unmeasured variables.

Though our procedure cannot always pin down a unique causal graphical model, from an equivalence class of graphs 
we can estimate bounds on causal effects. That is, for a given variable pair (X, Y ) we can calculate a set of estimates for 
the causal effect of X on Y . Each estimate corresponds to some model in the equivalence class. Some effects, for some or 
all models in the equivalence class, will not be identified because possible confounding cannot be blocked. Otherwise, the 
minimum and maximum estimates in the estimated set are bounds on the true causal effect, and these bounds can be used 
to prioritize follow-up experiments by, for example, concentrating on experimental manipulations of variables with effects 
bounded away from zero.

2. Definitions and background

It is assumed here that the causal structure of the system under study can be represented by a Directed Acyclic Graph (a 
DAG). A graph G is a pair (V, E) where V is a set of vertices corresponding to random variables V = {X1, ..., Xp} and E is a 
set of edges. A DAG contains only directed edges (→) and has no cycles (no sequence of directed edges from any variable to 
itself). If Xi → X j then Xi is called a parent of X j , and X j is a child of Xi . Two variables are adjacent if there is some edge 
between them, and a path is a sequence of distinct adjacent vertices (e.g., Xi ← X j ← Xk → Xl). A directed path from Xi to 
X j is a path which contains only directed edges away from Xi and toward X j . When there is a directed path from Xi to X j
we call Xi an ancestor of X j , and X j is a descendent of Xi . Denote the set of parents of a vertex X in G by pa(X, G), and 
the sets of ancestors of X and descendents of X by An(X, G) and De(X, G) respectively. The adjacency set of X is adj(X, G). 

1 See [29] for a simple example where ignorability fails, and propensity score estimation produces an incorrect conclusion.
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