
JID:IJA AID:8013 /FLA [m3G; v1.195; Prn:25/01/2017; 9:22] P.1 (1-10)

International Journal of Approximate Reasoning ••• (••••) •••–•••

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

1 1

2 2

3 3

4 4

5 5

6 6

7 7

8 8

9 9

10 10

11 11

12 12

13 13

14 14

15 15

16 16

17 17

18 18

19 19

20 20

21 21

22 22

23 23

24 24

25 25

26 26

27 27

28 28

29 29

30 30

31 31

32 32

33 33

34 34

35 35

36 36

37 37

38 38

39 39

40 40

41 41

42 42

43 43

44 44

45 45

46 46

47 47

48 48

49 49

50 50

51 51

52 52

53 53

54 54

55 55

56 56

57 57

58 58

59 59

60 60

61 61

Composition operator for densities of continuous variables

Vladislav Bína

Faculty of Management, University of Economics in Prague, Jarošovská 1117/II, 37701 Jindřichův Hradec, Czechia
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The paper presents an operator of composition for densities of continuous random 
variables and analyzes its properties, particularly the assertions useful for marginalization, 
lemmata concerning the conditional independence, theorems describing entropy of the 
composition and assertions for reordering of composed densities in the model. The 
generalized function of Dirac delta is proposed as a degenerated distribution allowing 
the expression of operation of conditioning using the composition of Dirac delta with a 
continuous density or with a compositional model. A special case of composition within 
the exponential family of distributions is considered.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The paper presents an approach to the composition of multidimensional densities of continuous random variables. In a 
way, it is an alternative to the copula approach based on Sklar’s famous theorem (see [13]) elaborated later into the form of 
a vine approach, e.g., [1]. For a basic discussion of the properties, advantages and disadvantages of the compositional model 
approach and copula based approaches, see [4] and [3].

The paper brings a definition of an operator of composition (already introduced in [3]) and analyzes its basic properties 
in a manner analogous to [6]. The basic aim is to show that the well-known generalized function of Dirac delta may serve 
as a (degenerated) distribution providing the possibility of defining the operation of conditioning (for a discrete case see [5]) 
when computing with distributions composed from continuous densities.

2. Preliminaries and basic notions

Throughout the presented paper we consider a finite index set N = {1, . . . , n} together with a set of random variables 
{Xi}i∈N with values, or vectors of values, denoted by the corresponding lowercase letters. The domain of variables will be 
denoted by the corresponding bold uppercase letter Xi . Variables with a finite or countable set of possible states are called 
discrete; other variables are called continuous. Both discrete (with real domain) and continuous variables can be described 
using (multi-dimensional) cumulative distribution function (CDF). However, to define an operator of composition, in a discrete 
case we use probability mass function which, in the theory of compositional models, is usually denoted by small Greek letters 
(κ, λ, μ, ν, π, . . . ). The theory of discrete compositional models and all related notions can be found in [6].

In order to define the operator of composition for continuous variables, we require the cumulative distribution function 
F to have a corresponding density f that coincides with the derivative of F whenever it exists (but almost everywhere 
in the sense of Lebesgue measure). For the sake of simplicity, in all opposite cases we require that the density f vanishes 
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to zero which makes the following considerations easier (the formulae hold everywhere instead of almost everywhere). 
Similarly, in the case of multivariate (joint) probability density function we require CDF to be sufficiently differentiable and 
corresponding partial derivatives to exist.

As previously mentioned, the probability density functions (of continuous random variables) will be denoted by lower-
case letters of the Latin alphabet ( f , g, h, . . . ), e.g., the abbreviated notation f (xK ) denotes a multidimensional density of 
variables having indices from set K ⊆ N .

For a probability density function f (xK ) and any set of variable indices L ⊂ K , a marginal probability density f (xL) of 
f (xK ) can be computed for each xL as follows

f (xL) =
∫

XK\L

f (xK )dxK\L

where obviously the integration runs over the domains of all variables in K \ L. We will also employ an equivalent way to 
denote the marginal f (xL), namely f ↓{L} which was introduced by Prakash Shenoy and Glenn Shafer (see, e.g., [12]).

Let us recall a notion of support (of a function), i.e. the set of points where the function f has non-zero values

S f = {x | f (x) �= 0}.
Having probability density f (xK ) and two disjoint subsets L, M ⊆ K we define the conditional probability density of XL

given a value xM = xM for every xL∪M as

f (xL | xM = xM) f (xM = xM) = f (xL, xM = xM).

Let us note that for f (xM = xM) = 0 the definition is ambiguous, but we do not need to exclude such cases.

3. Conditional independence

Continuous random variables xK having a joint density f (xK ) are all independent from each other if and only if for each 
xK the joint density function can be expressed as a product f (xK ) = f1(x1) · · · fk(xk) (K = {1, . . . , k}). An important notion 
is so-called conditional independence.

Definition 1 (Conditional independence). Let us have probability density function f (xK ) and three disjoint subsets L1, L2,

L3 ⊆ K where L1 and L2 are non-empty. We say that groups of variables XL1 and XL2 are conditionally independent given 
group XL3 if for each xL1∪L2∪L3 it holds

f (xL1∪L2∪L3) f (xL3) = f (xL1∪L3) f (xL2∪L3). (1)

We write XL1 ⊥⊥XL2 | XL3 [ f ].

Let us clarify what we will call the principle of marginal zeroing: if we have probability density f (xK ) and M ⊆ L ⊆ K then 
for each xK it holds that f (xM) = 0 implies f (xL) = 0 and this implies f (xK ) = 0.

Now it is apparent that in Formula (1) the equality holds for xK such that f (xL3 ) = 0. For each xK such that f (xL3 ) > 0
we can, according to the above definition, introduce conditional probability density and divide both sides of Formula (1) by 
f (xL3 ) obtaining

f (xL1∪L2∪L3) = f (xL1∪L3) f (xL2 |xL3). (2)

4. Operator of composition

Firstly, we can refer to an important binary relation of absolute continuity or dominance that can be found in any basic 
textbook on functional analysis, e.g., in [10]. Namely:

Definition 2. Let us have two probability density functions f (xK ) and g(xK ) with the same set of variables XK . Then f is 
said to be absolutely continuous with respect to g , or dominated by g (denoted by f 	 g) if for each xK ∈ XK it holds

(g(xK ) = 0 ⇒ f (xK ) = 0) .

The definition of the composition operator and its properties are in a way analogous to the situation in discrete proba-
bility distributions, see [6].

Definition 3. Consider two sets of continuous variables XL and XM , a probability density f (xL), and a probability density 
g(xM) such that f (xL∩M) 	 g(xL∩M). The right composition is given by

f (xL) � g(xM) = f (xL)g(xM)

g(xL∩M)
.
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