Composition operator for densities of continuous variables

Vladislav Bína
Faculty of Management, University of Economics in Prague, Jarošovská 1117/II, 37701 Jindřichův Hradec, Czechia

ARTICLE INFO

Article history:

Received 31 March 2016
Received in revised form 30 December 2016
Accepted 23 January 2017
Available online xxxx

Keywords:

Operator of composition
Continuous random variable
Dirac delta function
Conditioning
Exponential family

Abstract

The paper presents an operator of composition for densities of continuous random variables and analyzes its properties, particularly the assertions useful for marginalization, lemmata concerning the conditional independence, theorems describing entropy of the composition and assertions for reordering of composed densities in the model. The generalized function of Dirac delta is proposed as a degenerated distribution allowing the expression of operation of conditioning using the composition of Dirac delta with a continuous density or with a compositional model. A special case of composition within the exponential family of distributions is considered.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

The paper presents an approach to the composition of multidimensional densities of continuous random variables. In a way, it is an alternative to the copula approach based on Sklar's famous theorem (see [13]) elaborated later into the form of a vine approach, e.g., [1]. For a basic discussion of the properties, advantages and disadvantages of the compositional model approach and copula based approaches, see [4] and [3].

The paper brings a definition of an operator of composition (already introduced in [3]) and analyzes its basic properties in a manner analogous to [6]. The basic aim is to show that the well-known generalized function of Dirac delta may serve as a (degenerated) distribution providing the possibility of defining the operation of conditioning (for a discrete case see [5]) when computing with distributions composed from continuous densities.

2. Preliminaries and basic notions

Throughout the presented paper we consider a finite index set $N=\{1, \ldots, n\}$ together with a set of random variables $\left\{X_{i}\right\}_{i \in N}$ with values, or vectors of values, denoted by the corresponding lowercase letters. The domain of variables will be denoted by the corresponding bold uppercase letter \mathbf{X}_{i}. Variables with a finite or countable set of possible states are called discrete; other variables are called continuous. Both discrete (with real domain) and continuous variables can be described using (multi-dimensional) cumulative distribution function (CDF). However, to define an operator of composition, in a discrete case we use probability mass function which, in the theory of compositional models, is usually denoted by small Greek letters ($\kappa, \lambda, \mu, \nu, \pi, \ldots$). The theory of discrete compositional models and all related notions can be found in [6].

In order to define the operator of composition for continuous variables, we require the cumulative distribution function F to have a corresponding density f that coincides with the derivative of F whenever it exists (but almost everywhere in the sense of Lebesgue measure). For the sake of simplicity, in all opposite cases we require that the density f vanishes

[^0]to zero which makes the following considerations easier (the formulae hold everywhere instead of almost everywhere). Similarly, in the case of multivariate (joint) probability density function we require CDF to be sufficiently differentiable and corresponding partial derivatives to exist.

As previously mentioned, the probability density functions (of continuous random variables) will be denoted by lowercase letters of the Latin alphabet (f, g, h, \ldots), e.g., the abbreviated notation $f\left(x_{K}\right)$ denotes a multidimensional density of variables having indices from set $K \subseteq N$.

For a probability density function $f\left(x_{K}\right)$ and any set of variable indices $L \subset K$, a marginal probability density $f\left(x_{L}\right)$ of $f\left(x_{K}\right)$ can be computed for each x_{L} as follows

$$
f\left(x_{L}\right)=\int_{\mathbf{x}_{K \backslash L}} f\left(x_{K}\right) d x_{K \backslash L}
$$

where obviously the integration runs over the domains of all variables in $K \backslash L$. We will also employ an equivalent way to denote the marginal $f\left(x_{L}\right)$, namely $f^{\downarrow\{L\}}$ which was introduced by Prakash Shenoy and Glenn Shafer (see, e.g., [12]).

Let us recall a notion of support (of a function), i.e. the set of points where the function f has non-zero values

$$
S_{f}=\{x \mid f(x) \neq 0\} .
$$

Having probability density $f\left(x_{K}\right)$ and two disjoint subsets $L, M \subseteq K$ we define the conditional probability density of X_{L} given a value $x_{M}=\mathbf{x}_{\mathbf{M}}$ for every $x_{L \cup M}$ as

$$
f\left(x_{L} \mid x_{M}=\mathbf{x}_{\mathbf{M}}\right) f\left(x_{M}=\mathbf{x}_{\mathbf{M}}\right)=f\left(x_{L}, x_{M}=\mathbf{x}_{\mathbf{M}}\right)
$$

Let us note that for $f\left(x_{M}=\mathbf{x}_{\mathbf{M}}\right)=0$ the definition is ambiguous, but we do not need to exclude such cases.

3. Conditional independence

Continuous random variables x_{K} having a joint density $f\left(x_{K}\right)$ are all independent from each other if and only if for each x_{K} the joint density function can be expressed as a product $f\left(x_{K}\right)=f_{1}\left(x_{1}\right) \cdots f_{k}\left(x_{k}\right)(K=\{1, \ldots, k\})$. An important notion is so-called conditional independence.

Definition 1 (Conditional independence). Let us have probability density function $f\left(x_{K}\right)$ and three disjoint subsets L_{1}, L_{2}, $L_{3} \subseteq K$ where L_{1} and L_{2} are non-empty. We say that groups of variables $X_{L_{1}}$ and $X_{L_{2}}$ are conditionally independent given group $X_{L_{3}}$ if for each $x_{L_{1} \cup L_{2} \cup L_{3}}$ it holds

$$
\begin{equation*}
f\left(x_{L_{1} \cup L_{2} \cup L_{3}}\right) f\left(x_{L_{3}}\right)=f\left(x_{L_{1} \cup L_{3}}\right) f\left(x_{L_{2} \cup L_{3}}\right) . \tag{1}
\end{equation*}
$$

We write $X_{L_{1}} \Perp X_{L_{2}} \mid X_{L_{3}}[f]$.
Let us clarify what we will call the principle of marginal zeroing: if we have probability density $f\left(x_{K}\right)$ and $M \subseteq L \subseteq K$ then for each x_{K} it holds that $f\left(x_{M}\right)=0$ implies $f\left(x_{L}\right)=0$ and this implies $f\left(x_{K}\right)=0$.

Now it is apparent that in Formula (1) the equality holds for x_{K} such that $f\left(x_{L_{3}}\right)=0$. For each x_{K} such that $f\left(x_{L_{3}}\right)>0$ we can, according to the above definition, introduce conditional probability density and divide both sides of Formula (1) by $f\left(x_{L_{3}}\right)$ obtaining

$$
\begin{equation*}
f\left(x_{L_{1} \cup L_{2} \cup L_{3}}\right)=f\left(x_{L_{1} \cup L_{3}}\right) f\left(x_{L_{2}} \mid x_{L_{3}}\right) . \tag{2}
\end{equation*}
$$

4. Operator of composition

Firstly, we can refer to an important binary relation of absolute continuity or dominance that can be found in any basic textbook on functional analysis, e.g., in [10]. Namely:

Definition 2. Let us have two probability density functions $f\left(x_{K}\right)$ and $g\left(x_{K}\right)$ with the same set of variables X_{K}. Then f is said to be absolutely continuous with respect to g, or dominated by g (denoted by $f \ll g$) if for each $x_{K} \in X_{K}$ it holds

$$
\left(g\left(x_{K}\right)=0 \Rightarrow f\left(x_{K}\right)=0\right)
$$

The definition of the composition operator and its properties are in a way analogous to the situation in discrete probability distributions, see [6].

Definition 3. Consider two sets of continuous variables X_{L} and X_{M}, a probability density $f\left(x_{L}\right)$, and a probability density $g\left(x_{M}\right)$ such that $f\left(x_{L \cap M}\right) \ll g\left(x_{L \cap M}\right)$. The right composition is given by

$$
f\left(x_{L}\right) \triangleright g\left(x_{M}\right)=\frac{f\left(x_{L}\right) g\left(x_{M}\right)}{g\left(x_{L \cap M}\right)} .
$$

https://daneshyari.com/en/article/4945283

Download Persian Version:
https://daneshyari.com/article/4945283

Daneshyari.com

[^0]: E-mail address: bina@fm.vse.cz.
 http://dx.doi.org/10.1016/j.ijar.2017.01.008
 0888-613X/© 2017 Elsevier Inc. All rights reserved.

