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Markov logic networks (MLNs) have emerged as a powerful representation that incorpo-
rates first-order logic and probabilistic graphical models. They have shown very good 
results in many problem domains. However, current implementations of MLNs do not 
scale well due to the large search space and the intractable clause groundings, which 
is preventing their widespread adoption. In this paper, we propose a general framework 
named Ground Network Sampling (GNS) for scaling up MLN learning and inference. GNS 
offers a new instantiation perspective by encoding ground substitutions as simple paths 
in the Herbrand universe, which uses the interactions existing among the objects to 
constrain the search space. To further make this search tractable for large scale problems, 
GNS integrates random walks and subgraph pattern mining, gradually building up a 
representative subset of simple paths. When inference is concerned, a template network is 
introduced to quickly locate promising paths that can ground given logical statements. The 
resulting sampled paths are then transformed into ground clauses, which can be used for 
clause creation and probabilistic inference. The experiments on several real-world datasets 
demonstrate that our approach offers better scalability while maintaining comparable or 
better predictive performance compared to state-of-the-art MLN techniques.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Markov logic networks (MLNs) have gained wide attention in recent years due to their ability to unify the strengths of 
first-order logic and probabilistic graphical models [1,2]. Recent advances in MLNs have revealed their superiority in dealing 
with real world data, such as biochemistry [3,4], computer vision [5,6] and text [7–9]. Typically, an MLN attaches weights 
to first-order clauses and views these as templates for Markov network features. On the one hand, learning MLN structure 
from data contributes to capturing uncertain dependencies underlying the relational data in the form of clauses together 
with their weights [10–12]. On the other hand, inference in MLNs allows us to reason probabilistically about complex 
relationships according to some uncertain logical structure [13–15].

The learning and inference tasks in MLNs, although important, can be computationally prohibitive with the continuous 
increase in data size. Inference is crucial in structure learning, as they are intrinsically related to the problem of counting 
true groundings [16]. Besides, structure learning not only has a super-exponentially large search space, but also produces an 
overwhelming number of groundings during clause evaluation [17]. In brief, the exhaustive search and full grounding may 
fail to finish in a reasonable amount of time, which severely limits the size of domains they can be applied to.
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The search problem has motivated the quest for relational pathfinding [18] that exploits the training data to constrain the 
space of candidates, by finding paths of true ground atoms linked via their arguments and generalizing them into first-order 
clauses. As each path corresponds to a conjunction that has at least one support in the data, this allows the search to 
focus on regions with promising clauses. However, pathfinding typically requires exhaustive search over an exponential 
number of paths. Hence, bottom-up structure learning [11] only uses relational pathfinding to produce very short paths, 
with the resulting short clauses greedily joined into longer ones. Hypergraph lifting [19] and structural motif learning 
[20] on the other hand employ some form of structural clustering to induce a more compact representation, and facilitate 
efficient relational pathfinding for clause discovery. Unfortunately, clustering the observed data can itself be quite expensive, 
especially in domains involving a huge number of objects and complex relations among them, due to the combinatorics 
involved.

The intractability of counting how often the grounded clauses are satisfied promotes numerous studies on approximate 
inference algorithms [1,21,22]. Among them, Markov Chain Monte Carlo (MCMC) [23] sampling is arguably the most popular 
one, which approximates the target probability by generating a sequence of samples from a well-designed Markov chain. 
Despite its successes, the applicability of MCMC inference in MLNs is severely limited by the exponential cost of grounding 
all the logical statements. Several lifted inference algorithms improve upon MCMC by grouping random variables that are 
symmetrical give the first-order structure, and then sampling over the high-level representation [24–26]. However, they tend 
to lose their advantage in the presence of evidence, as evidence breaks symmetries. Another way to avoid full grounding 
is to perform lazy inference which achieves both memory and time savings by utilizing the relational sparseness, i.e., only 
a small fraction of ground atoms are true, and the great majority of clauses are trivially satisfied [14,27]. As lazy inference 
algorithms only ground atoms and clauses as needed, they incur the overhead in checking whether an atom or clause is in 
memory, retrieving and grounding the clauses activated by an atom. They may have increased inference time when ground 
atoms are updated frequently, along with the relevant clauses activated correspondingly.

Our current study aims at addressing the above problems in a unified and scalable manner. Based on MCMC simulation, 
we propose a novel MLN learning and inference framework named Ground Network Sampling (GNS) which encodes ground 
substitutions as simple paths in the Herbrand universe, i.e., a sequence of interactions among distinct objects.

GNS starts by converting the unary atoms (i.e., an atom that involves only one argument) into binary ones, so that the 
already-present ground atoms can all be treated as interactions between their arguments. Intuitively, the objects interact 
when they appear in a ground atom. The resulting argument pairs that share common objects are then concatenated in order 
of increasing length, hence forming a partial order graph (POG). Every node in the POG corresponds to an effective path 
which may describe whether or not the initial and terminal objects interact with each other. Subsequently, GNS performs a 
random walk on the POG with a prescribed transition probability matrix, and returns every target node it visits. On the one 
hand, GNS creates ground clauses from the uniformly sampled paths, and variabilizes them for discriminate weight learning. 
On the other hand, when inference is concerned, GNS adapts the uniform sampler to quickly locate promising paths that 
can ground the given logical statements. Based on the resulting ground network, GNS returns the probability estimations for 
query predicates. The experimental results on several real-world datasets validate the efficiency and efficacy of our proposed 
approach compared to the state-of-the-arts.

The main contributions of this paper are summarized as follows:

• We offer a new instantiation perspective by encoding the ground substitutions as simple paths in the Herbrand uni-
verse, and thus is suitable for obtaining representative ground networks for learning and inference in MLNs, where full 
grounding is infeasible or very expensive.

• We combine the benefits of random walks and subgraph pattern mining, which avoids exploring the entire POG and 
can speed up the search significantly. We also discuss the convergence rate to the stationary distribution. The output 
set consists of the simple paths that correspond to the non-trivial groundings of the discriminative clauses.

• We ensure efficient inference by leveraging the template network to locate promising paths that can ground the given 
clauses instead of all possible clauses. This amounts to performing a constrained random walk through the POG, with 
the resulting samples being used to estimate the probabilities of the query predicates.

The remainder of this paper is organized as follows. Section 2 provides the background and some related work on MLNs. 
Section 3 presents our scalable learning and inference approach, and the experimental results are reported in Section 4. 
Section 5 summarizes the conclusion of this work.

2. Markov logic networks

This section provides some background on representation, structure learning, discriminative weight learning, and condi-
tional inference for Markov logic networks. Let us briefly review some basic terminology which will be used throughout this 
paper. Constants starting with an uppercase letter (e.g. Bob) represent objects in the domain of interest. A lowercase letter 
(e.g. a) indicates a variable ranging over the objects. Predicates represent relations among objects or attributes of objects. 
An atom is a predicate symbol applied to a tuple of arguments, which may be variables or constants. A ground atom is 
an atom all of whose arguments are constants. Variables and constants are often typed. A positive literal is an atom, and a 



Download	English	Version:

https://daneshyari.com/en/article/4945309

Download	Persian	Version:

https://daneshyari.com/article/4945309

Daneshyari.com

https://daneshyari.com/en/article/4945309
https://daneshyari.com/article/4945309
https://daneshyari.com/

