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We propose a Bayesian approximate inference method for learning the dependence 
structure of a Gaussian graphical model. Using pseudo-likelihood, we derive an analytical 
expression to approximate the marginal likelihood for an arbitrary graph structure without 
invoking any assumptions about decomposability. The majority of the existing methods 
for learning Gaussian graphical models are either restricted to decomposable graphs 
or require specification of a tuning parameter that may have a substantial impact 
on learned structures. By combining a simple sparsity inducing prior for the graph 
structures with a default reference prior for the model parameters, we obtain a fast 
and easily applicable scoring function that works well for even high-dimensional data. 
We demonstrate the favourable performance of our approach by large-scale comparisons 
against the leading methods for learning non-decomposable Gaussian graphical models. 
A theoretical justification for our method is provided by showing that it yields a consistent 
estimator of the graph structure.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Bayesian learning of Gaussian graphical models

Gaussian graphical models provide a convenient framework for analysing conditional independence in continuous multi-
variate systems [1–3]. We consider the problem of learning Gaussian graphical models from data using a Bayesian approach. 
Most of the Bayesian methods for learning Gaussian graphical models make the assumption about the decomposability of 
the underlying graph [4–6]. Recently, Fitch et al. [7] investigated how Bayesian methods assuming decomposability perform 
in model selection when the true underlying model is non-decomposable. Bayesian methods that do not assume decompos-
ability have been considered more seldom in the literature, and in particular not in the high-dimensional case [8–14].

A widely used frequentist method for learning Gaussian graphical models is the graphical lasso [15,16]. Graphical lasso 
(glasso) uses l1-penalized Gaussian log-likelihood to estimate the inverse covariance matrices and does not rely on the 
assumption of decomposability. Other approaches include a neighbourhood selection (NBS) method by Meinshausen and 
Bühlmann [17] and Sparse Partial Correlation Estimation method (space) by Peng et al. [18]. The NBS-method estimates 
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the graphical structure by performing independent lasso regressions for each variable to find the estimates for the neigh-
bourhoods whereas space imposes an l1-penalty on an objective function corresponding to an l2-loss of a regression 
problem in order to estimate the non-zero partial correlations which correspond to edges in the graphical model.

Assuming decomposability in Bayesian methods has been popular, since it enables derivation of a closed form expres-
sion for the marginal likelihood under a conjugate prior. In our approach we bypass this restriction by replacing the true 
likelihood in the marginal likelihood integral by a pseudo-likelihood. This implies a factorization of the marginal pseudo-
likelihood into terms that can be evaluated in closed form by using existing results for the marginal likelihoods of Gaussian 
directed acyclic graphs. The marginal pseudo-likelihood offers further advantages by allowing efficient search algorithms to 
be used, such that model optimization becomes realistic for even high-dimensional data.

Dobra et al. [19] considered a similar pseudo-likelihood based approach. These two methods involve similar techniques 
in the first step where a general dependency network is learned using a Bayesian approach. A dependency network [20]
is a collection of conditional distributions for each variable given the others which are all fitted separately. In the general 
case, this network does not define a proper joint distribution for the variables. Dobra et al. use this dependency network in 
order to define an ordering for the variables before learning a directed acyclic graphical model over the variables. The found 
directed graph is then moralized in order to produce an undirected graph. In other words, their method does not consider 
general non-decomposable graphs.

Marginal pseudo-likelihood has been previously used to learn undirected graphical models with discrete variables in 
Pensar et al. [21]. Our paper can be seen to generalize the ideas developed there to the continuous domain by introducing 
the required methodology and providing a formal consistency proof under the multivariate normal assumption. Our method 
utilizes the fractional Bayes factors based approach of Consonni and La Rocca [22] to cope automatically with the difficulty 
of setting up prior distributions for the models’ parameters.

The rest of the paper is organized as follows. After introducing the notation, we briefly review the results by Consonni 
and La Rocca that are needed in deriving the expression for the marginal pseudo-likelihood. In Section 3 we state our main 
result by introducing the fractional marginal pseudo-likelihood. The detailed proof of its consistency for Markov blanket 
estimation is given in Appendix. A score-based search algorithm adopted from Pensar et al. [21] is presented in order to 
implement the method in practice. In Section 4 we demonstrate the favourable performance of our method by several 
numerical experiments involving a comparison against glasso, NBS and space.

1.2. Notations and preliminaries

We will start by reviewing some of the basic concepts related to graphical models and the multivariate normal distribu-
tion. For a more comprehensive presentation, see for instance [2] and [3].

Consider an undirected graph G = (V , E), where V = {1, . . . , p} is the set of nodes (vertices) and E ⊂ V × V is the set of 
edges. There exists an (undirected) edge between the nodes i and j, if and only if (i, j) ∈ E and ( j, i) ∈ E . Each node of the 
graph corresponds to a random variable, and together they form a p-dimensional random vector x. We will use the terms 
node and variable interchangeably. Absence of an edge in the graph G is a statement of conditional independence between 
the corresponding elements of x. More in detail, (i, j), ( j, i) /∈ E if and only if xi and x j are conditionally independent 
given the remaining variables xV \{i, j} . This condition is usually referred as the pairwise Markov property. We let mb(j)
denote the Markov blanket of node j. The Markov blanket is defined as the set containing the neighbouring nodes of j, 
mb(j) = {i ∈ V | (i, j) ∈ E}. The local Markov property states that each variable is conditionally independent of all others 
given its Markov blanket. An undirected graph G is called decomposable or equivalently chordal if each cycle, whose length 
is greater or equal than 4, contains a chord. By a cycle, we mean a sequence of nodes such that the subsequent nodes are 
connected by an edge and the starting node equals the last node in the sequence. The length of a cycle equals the number 
of edges in the cycle. A chord is an edge between two non-subsequent nodes of the cycle.

We will write x ∼ Np(0, �−1) to state that a random vector x follows a p-variate normal distribution with a zero mean 
and precision matrix �. We will denote the covariance matrix by � = �−1. The precision matrix �, and also equivalently �, 
are always assumed to be symmetric and positive definite.

Given an undirected graph G and a random vector x, we define a Gaussian graphical model to be the collection of 
multivariate normal distributions for x that satisfy the conditional independences implied by the graph G . Hence, a Gaussian 
graphical model consists of all the distributions Np(0, �−1), where �i j = 0 if and only if (i, j) /∈ E , i �= j. Otherwise, the 
elements of the inverse covariance matrix can be arbitrary, as long as symmetry and positive definiteness hold.

In contrast to the above undirected model, a Gaussian directed acyclic graphical model is a collection of multivariate 
normal distributions for x, whose independence structure can be represented by some directed acyclic graph (DAG) D =
(V , E). When considering directed graphs, we use pa(j) to denote the parent set of the node j. The set pa(j) contains nodes 
i such that (i, j) ∈ E . That is, there exists a directed edge from i to j. Similar Markov assumptions as those characterizing 
the dependency structure under undirected models, as described above, hold also for directed models, see, for instance, [3]. 
For each decomposable undirected graph, we can find a DAG which defines the same conditional independence assertions. 
In general, the assertions representable by DAGs and undirected graphs are different.
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