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A credal network associates a directed acyclic graph with a collection of sets of probability 
measures. Usually these probability measures are specified by tables containing probability 
values. Here we examine the complexity of inference in credal networks when probability 
measures are specified through formal languages. We focus on logical languages based 
on propositional logic and on the function-free fragment of first-order logic. We show 
that sub-Boolean and relational logics lead to interesting complexity results. In short, we 
explore the relationship between specification language and computational complexity in 
credal networks.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

A credal network represents a set of probability distributions through a directed acyclic graph and an associated set of 
“local” credal sets [2,10]. Usually these local credal sets are specified by tables containing probability values, possibly with 
some additional constraints between them.

In practice, any elicitation strategy must adopt some specification language in which to encode probability assessments 
and constraints. The simplest specification scheme is to allow inequalities such as P (A) ≥ 1/2. Interval-valued assessments 
such as P (A) ∈ [3/5, 7/10] are also common in the literature.

More complex modeling schemes may resort to Boolean operators, relations, and quantifiers. In that case the particular 
features of the specification language may greatly affect what can and what cannot be represented; also, these features may 
affect the computational complexity of queries we may wish to pose.

In this paper we study properties of credal networks as parameterized by specification languages, by extending a frame-
work we have recently proposed in the context of Bayesian networks [15]. We look at the interplay between expressivity 
(of specification languages) and complexity (of inference). We focus on logical languages that are fragments of propositional 
and first-order logic. Additionally, we focus on strong extensions as semantics for credal networks. We show that complexity 
of inferences touches on several interesting complexity classes.

We start with some necessary background in Section 2. We discuss our framework in Section 3, in particular looking at 
propositional languages. Sections 4 and 5 examine relational languages. Final remarks and possible extensions to this work 
appear in Section 6.

✩ This paper is part of the virtual special issue on the Ninth International Conference on Scalable Uncertainty Management (SUM 2015), edited by 
Christoph Beierle and Alex Dekhtyar.
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2. Background: credal networks and their strong extensions, and some complexity theory

In this paper every possibility space � is finite; a random variable is simply a function from � into the reals. We use 
capital letters at the end of the alphabet (X , Y , Z ) to denote random variables, and capital letters at the beginning of the 
alphabet (A, B) to denote events or propositions.

2.1. Credal sets

A set of probability measures is called a credal set [36]. When the possibility space � is finite, a set of probability 
distributions over random variables is completely characterized by a set of probability mass functions, each probability 
mass function corresponding to a distribution. We also use the term credal set to refer to sets of probability mass functions.

A set of probability distributions for a variable X is denoted by K (X). A set of probability mass functions for a variable X
is also denoted by K (X). Given a non-empty credal set K, for any event A we have its lower and upper probabilities, denoted 
by P (A) and P (A) respectively: P (A) = infP∈K P (A) and P (A) = supP∈K P (A). Conditional lower and upper probabilities 
are defined similarly: For events A and B we define P (A|B) = infP∈K:P(B)>0 P (A|B) and P (A|B) = supP∈K:P(B)>0 P (A|B)

whenever P (B) > 0. We leave P (A|B) and P (A|B) undefined when P (B) = 0 [60]; in fact, the value of P (A|B) and of 
P (A|B) is never used in this paper when P (B) = 0. An alternative approach would be to consider inference problems under 
the convention that P (A|B) = 0 and P (A|B) = 1 whenever P (B) = 0 [59]. Another possible approach would be to resort to 
the theory of full conditional probabilities to obtain P (A|B) and P (A|B) even when P (B) = 0 [8]. We leave such possibilities 
to future work.

2.2. Credal networks

A credal network consists of a directed acyclic graph where each node is a random variable Xi , together with a set of 
constraints on probability values [2,9,10]. Such a structure is useful as a representation for beliefs, opinions, and statisti-
cal summaries that may be available when modeling a particular problem. For instance, suppose we have five variables 
organized as follows:

Here we have that X1 and X2 are parents of X4; likewise, X3 and X4 are parents of X5. The parents of Xi are denoted by 
pa(Xi). Intuitively, the graph is understood as indicating that a random variable Xi is directly affected by its parents, and 
that Xi is independent of its nondescendants nonparents when its parents are fixed (this is called the Markov condition).

Even though one is free to impose general constraints on probability values, such as P (X3 = 1, X2 = 0) ≤ 1/2, usually ap-
plications restrict assessments to a few simple forms [2,10]. Typically we have each variable Xi associated with a nonempty 
local credal set K

πi
i (Xi) for each value πi of the parents of Xi . We assume that each local credal set is closed and convex, 

as usual in the theory of credal sets [36,59]. Also we focus on local credal sets that are specified by finitely many ex-
treme points,1 as our specification languages only deal with such objects. In this paper the semantics of such a graph and 
associated local credal sets is their strong extension, defined as the convex hull of the set{

P : there is P (·|pa(Xi) = πi) ∈ K
πi
i (Xi) for each Xi and πi, such that for every x1, . . . , xn

we have that P (X1 = x1, . . . , Xn = xn) = ∏n
i P

(
Xi = xi|pa(Xi) = π ′

i

) }
, (1)

where π ′
i denotes the projection of {X1 = x1, . . . , Xn = xn} on the parents of Xi . In this paper we focus solely on strong 

extensions, even though there are other ways to interpret the assessments in a credal network [11]. We refer to the set in 
Expression (1) as the complete extension of the credal network.

Note that every extreme point of the strong extension is a product measure consisting of extreme points selected from 
the local credal sets [21].

Given a credal network (graph and assessments) and its strong extension, we are interested in computing conditional 
upper probabilities such as P

(
X Q = 1|E)

, for some random variable X Q and event E.
Suppose we have P (E) > 0 and we want to compute P

(
X Q = 1|E)

. It so happens that we need only look at (the finitely 
many) extreme points of the strong extension when searching for this latter value, and only at those points that assign 
positive probability to E. To see this, note that every P in the strong extension can be written, due to closure and convexity, 
as a convex combination of extreme points of the strong extension. Hence

1 An extreme element of a closed convex set is one that cannot be written as a convex combination of other elements in the set.
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