
JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.1 (1-19)

International Journal of Approximate Reasoning ••• (••••) •••–•••

Contents lists available at ScienceDirect

International Journal of Approximate Reasoning

www.elsevier.com/locate/ijar

First-order under-approximations of consistent 

query answers ✩

Floris Geerts a, Fabian Pijcke b, Jef Wijsen b,∗
a University of Antwerp, Dept. of Mathematics and Computer Science, Middelheimlaan 1, B-2020 Antwerpen, Belgium
b Université de Mons, 20 Place du Parc, B-7000 Mons, Belgium

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 February 2016
Received in revised form 23 September 
2016
Accepted 19 October 2016
Available online xxxx

Keywords:
Conjunctive queries
Consistent query answering
Primary key

Consistent Query Answering (CQA) is a principled approach for answering queries on 
inconsistent databases. The consistent answer to a query q on an inconsistent database 
db is the intersection of the answers to q on all repairs, where a repair is any consistent 
database that is maximally close to db. Unfortunately, computing consistent answers 
under primary key constraints has already exponential data complexity for very simple 
conjunctive queries, and is therefore completely impracticable.
In this paper, we propose a new framework for divulging an inconsistent database to end 
users, which adopts two postulates. The first postulate complies with CQA and states that 
inconsistencies should never be divulged to end users. Therefore, end users should only 
get consistent query answers. The second postulate states that only those queries can be 
answered whose consistent answers can be obtained with low data complexity (i.e., by a 
polynomial-time algorithm or even a first-order logic query). User queries that exhibit a 
higher data complexity will be rejected.
A significant problem in this framework is as follows: given a rejected query, find other 
queries, called under-approximations, that are accepted and whose consistent answers are 
contained in those of the rejected query. We provide solutions to this problem for the 
special case where the constraints are primary keys and the queries are self-join-free 
conjunctive queries.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Inconsistent, incomplete and uncertain data is widespread in the internet and social media era. This has given rise to 
a new paradigm for query answering, called Consistent Query Answering (CQA) [2]. This paradigm starts with the notion of 
repair, which is a new consistent database that minimally differs from the original inconsistent database. In general, an 
inconsistent database can have many repairs. In this respect, database repairing is different from data cleaning which aims 
at a unique cleaned database.

In this paper, we assume that the only constraints are primary keys, one per relation. A repair of an inconsistent database 
db is a maximal subset of db that satisfies all primary key constraints. Primary keys will be underlined. For example, the 
database of Fig. 1 stores ages and cities of residence of male and female persons. For simplicity, assume that persons have 

✩ A short version of this article was published in the conference proceedings of SUM 2015 [1].

* Corresponding author.
E-mail addresses: floris.geerts@ua.ac.be (F. Geerts), fabian.pijcke@umons.ac.be (F. Pijcke), jef.wijsen@umons.ac.be (J. Wijsen).

http://dx.doi.org/10.1016/j.ijar.2016.10.005
0888-613X/© 2016 Elsevier Inc. All rights reserved.

http://dx.doi.org/10.1016/j.ijar.2016.10.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/ijar
mailto:floris.geerts@ua.ac.be
mailto:fabian.pijcke@umons.ac.be
mailto:jef.wijsen@umons.ac.be
http://dx.doi.org/10.1016/j.ijar.2016.10.005


JID:IJA AID:7961 /FLA [m3G; v1.190; Prn:14/11/2016; 10:55] P.2 (1-19)

2 F. Geerts et al. / International Journal of Approximate Reasoning ••• (••••) •••–•••

M N A C

Ed 48 Mons
Ed 48 Paris

Dirk 29 Mons

F N A C

An 37 Mons
Iris 37 Paris

Fig. 1. Example database with primary key violations.

unique names (attribute N). Every person has exactly one age (attribute A) and city (attribute C ). However, distinct tuples 
may agree on the primary key N , because there can be uncertainty about ages and cities. In the database of Fig. 1, there 
is uncertainty about the city of Ed (it can be Mons or Paris). The database can be repaired in two ways: delete either 
M(Ed, 48, Mons) or M(Ed, 48, Paris). A maximal set of tuples that agree on their primary key will be called a block; in 
Fig. 1, blocks are separated by dashed lines.

When database repairing results in multiple repairs, CQA shifts from standard semantics to certainty semantics. Given a 
query, the consistent answer (also called certain answer) is defined as the intersection of the answers on all repairs. That is, 
for a query q on an inconsistent database db, CQA replaces the standard query answer q(db) with the consistent answer, 
defined by the following intersection:⋂{

q(r) | r is a repair of db
}
. (1)

Thus, the certainty semantics exclusively returns answers that hold true in every repair. Given a query q, we will denote by 
�q� the query that maps a database to the consistent answer defined by (1).

A practical obstacle to CQA is that the shift to certainty semantics involves a significant increase in complexity. When 
we refer to complexity in this paper, we mean data complexity, i.e., the complexity in terms of the size of the database (for 
a fixed query) [3, p. 422]. It is known for long [4] that there exist conjunctive queries q that join two relations such that 
the data complexity of �q� is already coNP-hard. If this happens, CQA is completely impracticable.

This paper investigates ways to circumvent the high data complexity of CQA in a realistic setting, which is based on the 
following assumptions:

• If a query returns an answer to a user, then every tuple in that answer should belong to the consistent answer. In 
Libkin’s terminology [5], query answers must not contain false positives, i.e., tuples that do not belong to the consistent 
answer.

• The only queries that can be executed in practice are those with data complexity in FP or, even better, in FO. Here, FO
refers to the descriptive complexity class that captures all queries expressible in relational calculus [6]. FP is the class 
of function problems solvable in polynomial time.

Therefore, if the data complexity of a query �q� is not in FP, then the best we can go for is an approximation without false 
positives (also called under-approximation), computable in polynomial time. The term strategy will be used for queries that 
compute such approximations. Intuitively, a strategy can be regarded as a two-step process in which one starts by issuing a 
number of well-behaved queries �qi�, for i ∈ {1, . . . , �}, which can then be subject to a post-processing step. In this paper, 
well-behaved queries are those that are accepted by a query interface, e.g., self-join-free conjunctive queries qi such that 
�qi� is in FO, and post-processing is formalized as queries built-up from the �qi�’s.

We next illustrate our setting by an example. Consider the following scenario with two persons, called Bob and Alice. The 
person called Bob owns a database that is publicly accessible only via a query interface which restricts the syntax of the 
queries that can be asked. Our main results concern the case where the interface is restricted to self-join-free conjunctive 
queries. The database schema including all primary key constraints is publicly available. However, Bob is aware that his 
database contains many mistakes which should not be divulged. Therefore, whenever some end user asks a query q, Bob
will actually execute the query �q�. That is, end users will get exclusively consistent answers. But, for feasibility reasons, 
Bob will reject any query q for which the data complexity of �q� is too high. In this paper, we assume that Bob considers 
that data complexity is too high when it is not in FO. The person called Alice interrogates Bob’s database, and she will be 
happy to get exclusively consistent answers. Unfortunately, her query q will be rejected by Bob if the data complexity of �q�
is too high (i.e., not in FO). If this happens, Alice has to change strategy. Instead of asking q, she can ask a finite number 
of queries q1, q2, . . . , q� such that for every i ∈ {1, . . . , �}, the data complexity of �qi� is in FO, and hence the query qi will 
be accepted by Bob. No restriction is imposed on the number � of queries that can be asked. The best Alice can hope for 
is that she can compute herself the answer to �q� (or even to q) from Bob’s answers to �q1�, . . . , �q�� by means of some 
post-processing. The question addressed in this paper is: Given that Alice wants to answer q, what queries should she ask 
to Bob?

Here is a concrete example. Assume Bob owns the database of Fig. 1. Interested in stable couples,1 Alice submits the 
query q1 which asks “Get pairs of ages of men and women living in the same city”:

q1 = {
y, w | ∃x∃u∃z

(
M(x, y, z) ∧ F (u, w, z)

)}
.

1 According to [7], marital stability is higher when the wife is 5+ years younger than her husband.



Download	English	Version:

https://daneshyari.com/en/article/4945342

Download	Persian	Version:

https://daneshyari.com/article/4945342

Daneshyari.com

https://daneshyari.com/en/article/4945342
https://daneshyari.com/article/4945342
https://daneshyari.com/

