Contents lists available at ScienceDirect

EISTEASTIONAL JOTENAL OF ELECTRICAL POWER ENERGY SYSTEMS

Electrical Power and Energy Systems

journal homepage: www.elsevier.com/locate/ijepes

Adaptive robust AC optimal power flow considering load and wind power uncertainties

Ahmad Attarha^a, Nima Amjady^{a,*}, Antonio J. Conejo^b

^a Department of Electrical Engineering, Semnan University, Semnan, Iran

^b ISE and ECE Departments, The Ohio State University, Columbus, OH 43210, USA

ARTICLE INFO

Keywords: ACOPF Adaptive robust optimization Budget of uncertainty Initialization Wind power

ABSTRACT

This paper proposes a tri-level adaptive robust AC optimal power flow (AR-ACOPF) model incorporating wind units. The uncertain wind power production as well as the system demand are characterized in terms of bounded intervals forming a polyhedral uncertainty set. The proposed model is robust against any realization of uncertain parameters (i.e. wind power production and system demand) within the uncertainty set. Also the robustness of the solutions is controlled through a parameter denominated budget of uncertainty. Since the proposed tri-level model is not solvable via an off-the-shelf optimization package, a decomposition strategy relying on primal and dual cuts is proposed to solve it. To reduce the computation burden of the proposed AR-ACOPF problem, an effective initialization process is also presented. The proposed AR-ACOPF model and solution approach are illustrated using the well-known IEEE 300-bus and Polish 2746-bus test systems.

1. Introduction

The optimal power flow (OPF) is a common and frequently used operational tool in power systems. Mainly, OPF aims at obtaining the optimal operating state of a power system based on a specific objective function (commonly minimum cost) while both units and system constraints are satisfied. The OPF problem is usually modeled as a mixed integer and nonlinear (MINLP) optimization problem which is hard to solve [1-3]. Recently, the increasing penetration of intermittent renewable energy sources, such as wind power, has made this problem even more challenging. As the OPF is a large-scale and complex optimization problem, some of the previous research works have neglected the uncertainty sources and developed deterministic models [1-5]. However, deterministic OPF results may be non-optimal or even insecure when the power system deviates from the forecasted conditions such as forecasted wind power production or system demand. Therefore, to ensure security while considering uncertainties in the OPF problem, stochastic programming (SP) has been widely used [4-11]. Note, however, that SP characterizes the uncertain parameters by means of scenarios. Accordingly, the optimal solution of a SP problem is only guaranteed to be feasible for the scenarios considered in the model. Moreover, the solution space of a SP problem depends on the number of uncertain parameters and the number of scenarios. Accordingly, SP faces two challenges: (1) becoming intractable for largescale optimization problems, and (2) requiring a detailed distributional

knowledge of uncertain parameters, information that is rarely available in practice [12].

To overcome SP difficulties, robust optimization [12] has recently attracted an increasing attention. However, previous robust OPF research works consider DC power flow equations instead of AC ones [13]. In a DC representation, voltage magnitudes and reactive powers as well as their constraints are neglected. As a result, the obtained solutions might be inaccurate or even insecure.

To overcome the aforementioned limitations, this paper proposes an adaptive robust OPF model with AC constraints (AR-ACOPF), characterizing the uncertainties pertaining to wind power productions and system demands in terms of bounded intervals rather than scenarios. Also, the effect of contingencies is considered in this work using a prespecified set of these contingencies. In comparison to the robust AC unit commitment (ACUC) presented in [14], the following differences can be mentioned:

- (1) In the ACUC work in [14], the second level considers DC power flow equations. However, in this OPF work, a new linearization process is applied to the AC power flow equations to find the worstcase realization of the uncertain parameters. Unlike DC power flow equations, the linearized AC power flow equations consider reactive power and voltage magnitude, which increases the accuracy of the second level.
- (2) In the ACUC work in [14], only the uncertainty of wind power is

http://dx.doi.org/10.1016/j.ijepes.2017.09.037

^{*} Corresponding author.

E-mail address: amjady@semnan.ac.ir (N. Amjady).

Received 14 July 2017; Received in revised form 2 September 2017; Accepted 26 September 2017 0142-0615/ © 2017 Elsevier Ltd. All rights reserved.

S l

Nomenclature Indices index of thermal units п i/k index of buses index of iterations index of branches

index of break points т

s' index of out-of-sample scenarios

Parameters

A_n , B_n , C_n the coefficients of the quadratic cost function pertaining to		
	thermal unit <i>n</i>	
PLC_n^m	the production cost of power segment P_n^m	
Cw_i	the marginal cost of the wind unit at bus <i>i</i>	
C^{Sh}	cost of unserved load	
C_n^U/C_n^D	cost of the up/down deployed reserve of thermal unit n	
G_{ik}/B_{ik}	conductance/susceptance of line <i>i</i> -k	
u u	budget of uncertainty	
$\Gamma_{ik}^{max}/\Gamma_{ik}^{min}$	maximum/minimum limits of Γ_{ik}	
$\theta_{i}^{phase max}$	$(\theta_{2}^{phase\ min}\ maximum/minimum\ limits\ of\ \theta_{2}^{phase}$	
$O_{ik}^{C} max / O_{ik}^{C}$	C^{min} maximum/minimum limits of O_{ik}^{C}	
P^{max}/P^{min}	maximum/minimum active power output of thermal unit	
¹ n / ¹ n	$n \cdot P^{max}/P^{min}$ are maximum /minimum limits for segment m	
	of thermal unit n	
O^{max}/O^{mi}	^{<i>n</i>} maximum/minimum reactive power output of thermal	
q_n / q_n	unit <i>n</i>	
$R_{u}^{U,max}/R_{u}$	D_{imax} maximum up/down reserve capacity of thermal unit	
n	indiminant up, down reserve capacity or mornial and	
\overline{Pw}	forecasted wind power output of the wind unit at bus <i>i</i>	
$\frac{Pd}{Pd}$	forecasted load demand of bus <i>i</i>	
$\widehat{Pw}_{l}/\widehat{Pd}_{l}$	deviation of \overline{Pw} , and \overline{Pw} , from \overline{Pd} , and \overline{Pw} , respectively	
$\widetilde{Pw}^{s}/\widetilde{Pd}^{s}$	the worst case realization of Pw_{i}/Pd_{i} at iteration s	
= s' = s'	The worst case realization of $T w_i / T u_i$ at iteration s	
Pw_i^s/Pd_i	realizations of Pw_i/Pd_i at scenario s'	
pf_k	power factor of the demand at bus k	
$\Delta V_k^{max} / \Delta V$	V_k^{min} maximum/minimum value for ΔV_k	
BF_l^{max}	maximum capacity of branch l	
MI	sufficiently large constant	
Sets		
ω^{DC}	set of dual cuts generated by the third-level problem	
ω^{PC}	set of primal cuts generated by the second-level problem	
$\omega^{ m ACOPF}$	set of ACOPF constraints for continuous decision variables	
ω^{LACOPF}	set of linear ACOPF (LACOPF) constraints for continuous	
	decision variables	
$\omega^{\mathrm{I-OPF}}$	set of OPF constraints for integer decision variables	
ω^{I}	set of buses	
ω^w	set of wind units	
ω^{NG}	set of thermal units	
ω^{NG_k}	set of thermal units connected to node k	
ω^L	set of lines	
ω_n^{BP}	set of break points for thermal unit n	

ωs set of out-of-sample scenarios

 ω^{US} uncertainty set

considered. However, in this OPF work both the uncertainties of load and wind power are taken into account, which makes the OPF solution immune against load forecast errors in addition to wind power forecast errors.

(3) The ACUC work in [14] considers linear approximation of the quadratic cost function of units. However, as OPF is closer to power

Variables	
Γ_{ik}	tap setting of the tap-changing transformer <i>i-k</i> ; Γ_{ik}^{s} indicates Γ_{ik} at iteration <i>s</i>
$ heta_{ik}^{phase}$	setting of the phase shifter <i>i-k</i> ; $\theta_{ik}^{phase^s}$ indicates θ_{ik}^{phase} at iteration <i>s</i>
Q_i^C	setting of the shunt capacitor/reactor of bus <i>i</i> ; $Q_i^{C^s}$ indicates O_i^C at iteration <i>s</i>
P_n / Q_n	active/reactive power of thermal unit <i>n</i> ; P_{ns}/Q_{ns} indicate P_n/Q_n at iteration <i>s</i>
P_n^m	active power output of thermal unit <i>n</i> in segment <i>m</i> of the piece-wise linear approximation of its cost function; P_{ns}^{m} indicates P_{n}^{m} at iteration <i>s</i>
$Pr_{ns'}^{U}/Pr_{ns'}^{D}$	up/down deployed reserve of thermal unit n in scenario s' of the out-of-sample analysis
P_i^{sp}	spillage of the wind unit at bus <i>i</i> ; P_{is}^{sp} indicates P_i^{sp} at iteration <i>s</i> ; P_{is}^{sp} indicates P_i^{sp} in scenario <i>s'</i> of the out-of-sample analysis
P_i^{Sh}	unserved load at bus <i>i</i> ; P_{is}^{Sh} indicates P_i^{Sh} at iteration <i>s</i> ; P_{is}^{Sh} indicates P_i^{Sh} in scenario <i>s</i> ' of the out-of-sample analysis
ΔV_k	deviation of voltage magnitude from 1 p.u. at bus $k;\Delta V_{ks}$ indicates ΔV_k at iteration s
V_k	voltage magnitude of bus k
Θ_k	Voltage angle at bus k ; θ_{ks} indicates θ_k at iteration s
BF_l	apparent power flow of branch l ; BF_{ls} indicates BF_l at iteration s
lBF_l	linear approximation of the apparent power flow of branch l ; lBF_{ls} indicates lBF_l at iteration s
LB ^{ACOPF}	lower bound of the objective function of the ACOPF pro- blem
LB ^{LACOPF}	lower bound of the objective function of the LACOPF problem
UB ^{ACOPF}	upper bound of the objective function of the ACOPF pro- blem
UB ^{LACOPF}	upper bound of the objective function of the LACOPF problem
$egin{aligned} & ho, au, arphi \\ & \lambda_{ik}^{ ext{ I}}, \ & \lambda_{ik}^{ ext{ II}}, \ & \lambda_{ik} \end{aligned}$	auxiliary continuous variable ${}^{\rm III}_k$ dual variables
Ψ_{I}	objective function of the accord level problem
Ψ _{II} Ψ	objective function of the third-level problem where Ψ^{s}
III III	indicates Ψ_{III} at iteration s
$\Psi_{OS}^{s'}$	objective function of scenario s' pertaining to the out-of- sample analysis
Uncertain	parameters
\widetilde{Pw}_i \widetilde{Pd}_i	uncertain wind power of the wind unit at bus <i>i</i> uncertain load demand of bus <i>i</i>

Vectors

E, F vector of operation costs U vector of uncertain parameters

- М vector of integer decision variables
- N vector of continuous decision variables

delivery, a more accurate cost function is usually required. For this reason, we consider piece-wise linear approximation of the quadratic cost function in the second level and the exact quadratic cost function in the third level of the proposed OPF model.

(4) Since the results obtained from a linearized AC power flow are close to the results of a nonlinear AC power flow, we have used an

Download English Version:

https://daneshyari.com/en/article/4945396

Download Persian Version:

https://daneshyari.com/article/4945396

Daneshyari.com