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A B S T R A C T

Continuous Wavelet Transform (CWT) is a traditional single-channel method to estimate the dominant mode
from measurements, but it is rarely applied to estimate mode shapes and coherent generators. On the other hand,
estimation accuracy of traditional CWT is significantly affected by the observability of oscillations. This paper
develops a multichannel CWT which is based on multichannel measurements and is less observability con-
strained so as to estimate not only dominant modes, but also mode shapes and coherent generators. First, wa-
velet power spectrum (WPS) is applied to wavelet coefficient matrices (WCMs) of multichannel measurements
obtained by CWT to detect the critical scale ranges associated with the dominate modes. Then, the WCMs with
the same scales in the detected ranges extracted from the raw WCMs are used to estimate the dominant modes
and mode shapes. Meanwhile, the measurements that only contains the information of dominant modes are
reformed by inverse CWT to detect the coherent groups of generators using direction cosines. The proposed
approach is applied and evaluated with the simulation data from the 16-generator 68-bus test system and field
measurements from Phasor Measurement Units (PMUs) in China Southern Power Grid (CSG). Results show that
the proposed approach is accurate and efficient in estimating dominant modes, mode shapes and coherent
groups of generators from synchrophasor measurements.

1. Introduction

Electromechanical oscillations are inherent in power systems, and
can be described by frequency, damping, mode shapes and coherency
[1,2]. Correct identification of these modal properties exerts great in-
fluences to the power grid operator. The Western Electricity Co-
ordinating Council (WECC) blackout happened on 10 August 1996 was
caused by falsely estimating one unstable inter-area mode as stable [3].
Such false estimation was mainly due to the inaccuracy of the system
model and parameters. Because of the extreme complexity in power
systems, accurate models and parameters are not easy to obtain [3].
Consequently, researchers began to adopt the measurement-based
methods, which seized the system status better to estimate the mode,
mode shapes and coherent generators [4–19].

To estimate the dominant mode from the phasor measurement unit
(PMU) data in power grids, Prony was initiated by Hauer et al. [6] and
further extended by Zhou et al. [7] to detect the dominant modes

automatically with a stepwise regression method. Peng et al. [8] and
Chauduri et al. [9] used Kalman filter to estimate the dominant modes,
Kamwa et al. [10] proposed a multi-band modal analysis (MBMA), a
hybrid of parametric and nonparametric methods, to estimate the
modes. Zhou et al. [11,12]developed autoregressive moving average
exogenous (ARMAX)-based robust recursive least square (RRLS) and
regularized robust recursive least squares (R3LS) to detect the dominant
modes. In addition, empirical mode decomposition (EMD) [13], sto-
chastic subspace identification (SSI) [14,15], eigensystem realization
algorithm (ERA) [16], and continuous wavelet transform (CWT)
[17,18] were applied to estimate the dominant modes from the PMU
data.

To estimate the mode shape from PMU data, a theoretical basis and
signal-processing approach were initiated by Trudnowski [19].
Tashman et al. [20] developed a multi-dimensional Fourier ringdown
analyzer (MFRA) to carry out modes and mode shapes analysis. Dosiek
et al. [21] used multichannel ARMAX to estimate the mode shapes and
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Ni et al. [22] applied SSI to mode shapes estimation. Further, Dosiek
et al. [23] comparatively reviewed the existing ambient mode shapes
estimation approaches including transfer function (TF), spectral
method, frequency domain decomposition (FDD), channel matching,
and subspace methods, and pointed out that spectral, FDD and channel
matching methods were all special cases of the more general TF
Method, which may cause high estimation bias, while the subspace
method exhibited a good performance in the mode shape estimation.

To estimate the coherent groups of generators from PMU data,
Senroy et al. [24] used Hilbert-Huang Transform (HHT) to track the
system coherency. In [25], Fast-Fourier Transform (FFT) was employed
to identify the coherent generators. Signal correlation coefficient was
defined by Vahidnia et al. [26] to explore the coherent generators and
the related buses. Anaparthi et al. [27] conducted the principal com-
ponent analysis (PCA) to find the coherent generators. Moreover, to
suppress the noise in the field measurements, independent component
analysis (ICA) was investigated by Ariff et al. [28] to identify the co-
herent areas. In [29], wavelet phase difference (WPD) was applied to
separate the power system areas with coherent generator groups by
using the CWT. In [30], the Koopman mode (KM) was used to identify
the coherent groups by comparing the amplitude coefficients and initial
phases of the Koopman modes. Based on [30], a dynamic mode de-
composition (DMD) algorithm was further proposed in [31] to detect
the coherent groups.

These abovementioned methods focus on the estimation of one or
two facts among dominant modes, mode shapes and coherent groups,
but only DMD discussed estimating them all. Although DMD is reliable
in estimating dominant modes, mode shapes and coherent groups of
generators, it still has a major limitation that DMD assumed the PMU
data to be noise-free and stationary, which is a less realistic assumption
in power system small signal stability studies.

Motivated by the MBMA proposed in [10], a multichannel CWT
based modal analysis is developed in this paper to estimate not only
dominant modes, but also mode shapes and coherent groups of gen-
erators from synchrophasor measurements. The major contributions of
this work are as follows.

(1) An improved multichannel CWT-based dominant mode estimation
is proposed. It is based on the multichannel CWT proposed in [18].
However, the process is simplied in this work and the improved
process solves the problem of critical information loss in the data
process reported in [16].

(2) Using multichannel CWT to estimate mode shapes is proposed in
this work for the first time.

(3) This work also proposes an estimation method of coherent groups of
generator by the use of inversed CWT (ICWT) to reform the mul-
tichannel synchronphasor measurements.

The rest of this paper is organized as follows. Section 2 reviews the
CWT-based modal analysis. Section 3 develops a multichannel CWT
based modal analysis to estimate the dominant mode, mode shapes, and
coherent groups of generators from synchrophasor measurements.
Section 4 validates the performance of the developed methods using the
simulation data from the 16-generator 68-bus test system and field
measurements from the PMUs in China Southern Grid (CSG). Section 5
draws the conclusions.

2. Continuous wavelet transform

The CWT of measurement y(t) can be expressed by the following
inner product:
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where W(a, b) is the wavelet coefficient of y(t); a is a scale factor; b is a

translation factor; ϕa,b is named daughter wavelet, obtained by scaling
and translating ϕ(t) with a and b, respectively. The detailed re-
presentation of ϕa,b is expressed as:
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where ϕ(t) is defined as a mother wavelet.
There are multiple types of mother wavelets developed in CWT for

different research purposes such as the complex Gaussian wavelet,
complex Morlet wavelet, Mexican hat wavelet, complex Shannon wa-
velet, and so on. For the mode estimation in this work, the complex
Morlet wavelet is chosen for (1) as the mother wavelet which has all the
desired properties [17]. Detailed expression of complex Morlet wavelet
ϕ(t) is
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where, fb and fc are bandwidth and center frequencies of complex
Morlet wavelet, respectively. The complex Morlet wavlet ϕ(t) in (3)
should satisfy the following admissibility condition
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where ϕ(ω) is the Fourier transformation of ϕ(t) and Cϕ is called ad-
missibility constant. The admissibility condition in (4) requires that the
mother wavelet ϕ(t) in (3) to be oscillatory in time and satisfy the
followings:

∫= == −∞

+∞
ω t dtϕ( )| ϕ( ) 0ω 0 (5)

Further, substituting the mother wavelet in (3) into (2), the
daughter wavelet ϕa,b in (2) is
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If the mother wavelet ϕ(t) in (3) satisfies the admissibility condition
in (4), the measurement y(t) in (1) can be further obtained via the
following inverse CWT (ICWT).
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Since the small signal oscillations in the power system can be ex-
pressed as a linear combination of its embedded modes [17], the
measurement y(t) containing n dominant oscillation modes can be re-
presented as follows:
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where Ak, ζk, ω0k, ωk and θk are the magnitude, damping, un-damped
angular frequency, damped angular frequency, and phase angle of the
k-th dominant mode contained in y(t), respectively.

By substituting (8) into (1), the wavelet coefficient of y(t) at the
scale ak associated with the k-th dominant mode contained in y(t) can
be expressed as:
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Substituting (6) into (9), the detailed representation of W(ak, b) in (9) is
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According to (10), the detailed form of wavelet coefficient matrix W
(a, b) for y(t) can be further described as:
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