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a b s t r a c t

The holomorphic embedding load flowmethod (HELM) is an application for solving the power-flow prob-
lem based on a novel method developed by Dr. Trias. The advantage of the method is that it comes with a
theoretical guarantee of convergence to the high-voltage (operable) solution, if it exists, provided the
equations are suitably framed. While theoretical convergence is guaranteed by Stahl’s theorem, numer-
ical convergence is not; it depends on the analytic continuation algorithm chosen. Since the holomorphic
embedding method (HEM) has begun to find a broader range of applications (it has been applied to non-
linear structure-preserving network reduction, weak node identification and saddle-node bifurcation
point determination), examining which algorithms provide the best numerical convergence properties,
which do not, why some work and not others, and what can be done to improve these methods, has
become important. The numerical Achilles heel of HEM is the calculation of the Padé approximant, which
is needed to provide both the theoretical convergence guarantee and accelerated numerical convergence.
In the past, only two ways of obtaining Padé approximants applied to the power series resulting from
power-system-type problems have been discussed in detail: the matrix method and the Viskovatov
method. This paper explores several methods of accelerating the convergence of these power series
and/or providing analytic continuation and distinguishes between those that are backed by the theoret-
ical convergence guarantee of Stahl’s theorem (i.e., those computing Pade approximants), and those that
are not. For methods that are consistent with Stahl’s theoretical convergence guarantee, we identify
which methods are computationally less expensive, which have better numerical performance and what
remedies exist when these methods fail to converge numerically.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The nonlinear equations that characterize the power-flow prob-
lem are the bedrock equations for many power system analysis and
simulation problems. Of the various numerical methods
researched in the past to solve the power-flow problem, the
Newton-Raphson (NR) method and its variants such as the Fast
Decoupled Load Flow (FDLF) algorithms are most widely used in
the power industry [1–5]. While these methods have been shown
to be very reliable and robust for most problems, they do have con-
vergence issues for ill-conditioned systems. In such cases, if a solu-
tion is not found by the NR-based methods, it is not possible to
know whether the given problem does or does not have an opera-
ble solution or whether the algorithm simply failed to find one. In
some rare cases (especially when the operating point is close to the
saddle node bifurcation point (SNBP) of the system,) NR can con-
verge to a low-voltage (inoperable) solution. A novel non-

iterative (recursive) algorithm, the holomorphically embedded
load-flow method (HELM) was proposed by Dr. Antonio Trias
which is theoretically guaranteed to converge to the high-voltage
(operable) solution if one exists, provided the conditions of Stahl’s
theorem are satisfied [6–9] and the precision of the computing
engine is sufficient.

From its introduction to the power system community in 2012,
the holomorphic embedding method (HEM) has been applied to an
ever expanding list of applications. The holomorphically embedded
power flow formulation (HEPF) was first applied to the power-flow
problem with only PQ buses [10]. A model for PV buses was pro-
posed in [11] along with an algorithm which considered the dis-
crete changes in the system such as bus-type switching and tap-
changing transformers. The algorithm was extended to dc systems
in [12] where it was shown that the method could accommodate
the nonlinearities that characterize the I-V curves of power elec-
tronics devices. The HEPF theory, adapted for ZIP-load models,
was first presented in [14], such that the solution obtained at dif-
ferent values of embedding parameter, a, represented the bus volt-
ages when the loads were scaled by a, and the smallest real pole or
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zero of the Padé approximants was shown to give the load-scaling
value corresponding to the SNBP. Such a scalable formulation has
also been used to develop network equivalents that remain accu-
rate even as the operating conditions change in [15,40]. A formula-
tion aimed at finding the low-voltage solutions of a power system
was proposed in [13] using the HEPF. With the exception of [12],
all the above-mentioned manuscripts report using either the
matrix method or the Viskovatov method to calculate the Padé
rational-function approximants to obtain converged values of the
bus voltage series. These methods have the advantage that they
provide the voltage solution as a ratio of two (analytical) polyno-
mials in the embedding parameter a, and the analytical nature of
this solution expression was used to advantage in [14,15] to esti-
mate the SNBP and critical to generating nonlinear reduced-order
equivalent networks [15,40] and weak-bus determination [41].
Knowledge that the poles of the close-to-diagonal Padé approxi-
mants accumulate on Stahl’s compact set [7,8] was critical to effi-
cient SNBP estimation. A discussion about the various caveats of
the Padé approximants such as the defects (also known as Froissart
doublets) is provided in [12]. These defects are spurious pole-zero
pairs which are transient in nature, i.e., they appear and disappear
from an approximant of one degree to another and are not indica-
tors of the true singularities of the function [17], which must be
taken into account when estimating the SNBP. Since the power-
flow equations are algebraic equations, Stahl’s theorem [8] shows
that Froissart doublets can occur only due to numerical round-off
and not with exact arithmetic. Thus for the power-flow problem,
spurious pole-zero pairs can be avoided by increasing the Padé
order [12] and using the behavior of the smallest roots of succes-
sive approximants to identify these anomalous pairs.

In the remainder of this paper, the holomorphic embedding
method applied to the power-flow problem will be referred to as
HEPF, in order to distinguish it from HELM which is a patented
application whose implementation details are not available in
the public domain. The essence of the HEPF method is to convert
the original non-holomorphic power-balance equations (non-
holomorphic in the voltage variable) into holomorphic functions
by suitably embedding a complex parameter a. The voltages are
then obtained as a Maclaurin series of a and Stahl’s theorem guar-
antees theoretical convergence provided analytic continuation, via
diagonal or near-diagonal Padé approximants, is used to obtain the
converged values of the series.

While many articles have been published on HEPF/HELM, these
articles discuss only the theoretical convergence guarantee,
remaining silent on numerical issues, leaving the reader suscepti-
ble to inferring erroneously that the theoretical convergence guar-
antee necessarily implies a numerical convergence guarantee.
Therefore, it is important within the context of this paper to under-
stand what Stahl’s theorem does and does not say. First it provides
a theoretical convergence guarantee provided rather mild condi-
tions on the nonlinear algebraic equations are satisfied, conditions
that the power-flow equations can be structured to satisfy. Theo-
retical convergence is guaranteed provided diagonal or near-
diagonal Padé approximants are used to perform the analytic
continuation. Stahl’s theorem does not guarantee theoretical con-
vergence with either limited precision or when a limited number
of series terms is used. Further Stahl’s theorem is silent about
whether other (non-Padé-approximant) convergence acceleration
and analytic continuation techniques might also guarantee theo-
retical convergence. The objective of this work is to show that,
indeed, while theoretical convergence may be guaranteed when
using Padé approximants, numerical convergence is not guaran-
teed and is dependent on the numerical method chosen. A second
objective is to assess whether other convergence acceleration tech-
niques, which may or may not be the silent beneficiaries of an

undiscovered theoretical convergence guarantee, have acceptable
performance when applied to the power-flow problem.

As an example of the lack of numerical convergence guarantee,
we have observed that for heavily loaded systems that are close to
SNBP, the HEPF needs more terms and higher precision in order to
obtain convergence when the matrix method of calculating Padé
approximants is used [16]. This is to be expected since beyond
the SNBP, the non-existence of a solution is indicated by the oscil-
lation of the sequence of diagonal/near-diagonal Padé approxi-
mants and hence as one approaches the SNBP the convergence
behavior of Padé approximants degrades. For example, for the IEEE
118-bus system using the matrix method, with 61 terms one can
converge at load-levels up to 98.2% of the SNBP, while with 201
terms one converges up to 99.8% of the SNBP. However, with 301
terms one can converge only up to 99.6% of the SNBP. One infers
from these results that higher precision along with more terms
aids in extending the region of numerical convergence. (Theoreti-
cally, when using diagonal Padé approximant, the convergence
domain coincides with the function’s domain, assuming an infinite
series and infinite precision is used.) The primary loss of accuracy
in the HEPF occurs during the calculation of the Padé approximants
[16]. This manuscript compares eight different techniques for
obtaining rational approximants or enhancing the numerical con-
vergence properties, along with additional techniques involving
algebraic as well as integral Hermite-Padé approximants all
numerically tested on power series obtained by HEPF. However
at loading levels that are significantly short of the SNBP, numerical
convergence is typically not an issue.

Given that the numerical Achilles heel of HEPF (and the holo-
morphic embedding method (HEM) in general) is the calculation
of the Padé approximant, this paper first focuses on the numerical
performance of the most researched Padé-approximant algorithms
for providing analytic continuation. Next we focus on the most
researched convergence-accelerating algorithms that have no
supporting theory, like Stahl’s theorem, governing theoretical
convergence.

The rest of this paper is organized as follows: Section 2 has
descriptions of eight different ways of accelerating the conver-
gence of a given power series, some of which are equivalent to
diagonal/near-diagonal Padé approximants and hence are theoret-
ically (though not numerically) guaranteed by Stahl’s theorem to
converge to the solution, while others have no theoretical conver-
gence guarantee. Section 3 contains the numerical results for these
different algorithms when applied to the IEEE 14-bus, 118-bus,
300-bus systems and a 6057-bus ERCOT system. Section 4 has brief
descriptions of the Hermite-Padé approximants and Section 5 con-
tains a discussion on why the quadratic approximants can give the
exact solutions for the two-bus power-flow problem. Section 6
contains the numerical results for different systems using quadra-
tic approximants. Finally, the conclusions are presented in
Section 7.

2. Different methods of obtaining rational approximations for a
power series

2.1. Algorithms that yield analytic continuation via Padé approximants

2.1.1. Algorithms that yield diagonal/near-diagonal Padé
approximants

From Stahl’s convergence theory, the diagonal/near-diagonal
Padé approximants yield the maximal analytic continuation (ana-
lytic continuation over the maximal domain of the function) and
hence provide the convergence guarantee relied on by HELM. A
diagonal Padé approximant for a series with a finite number of
terms is a rational approximant whose numerator and denomina-
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