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a b s t r a c t

This paper presents an efficient distributed auction optimization algorithm (DAOA) based on the gossip
communication mechanism for the nonconvex economic dispatch problem. The problem contains several
constraints such as generation output limits, valve-point loading effects, multiple fuels, and the supply-
demand balance. The gossip communication mechanism runs as two layers. The first layer triggers the
leaders to conduct the local auction optimization, and the second layer is the auction protocol that selects
the optimal neighbors to cooperate with the leaders to implement the auction decision. Auction opti-
mization is a local optimization method, in which the units evaluate the bids of a certain amount of out-
put power and the paired bid winners update their output power to reduce the generation cost. Better
solutions can be obtained through gossip communication and local optimizations. Numerous simulations
are conducted to demonstrate the effectiveness of the proposed strategy.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The economic dispatch problem is a fundamental optimization
problem in power systems. The goal of the problem is to optimize
the combination of the units output power to reduce the total gen-
eration cost while meeting the constraints total load demand and
generator constraints [1]. Considerable methods for solving the
economic dispatch problem, such as the lambda-iteration method
[2], the gradient search method [3], the quadratic programming [4]
have been proposed. These mathematical programming techniques
require the derivable cost function as the quadratic form. Never-
theless, the cost characteristics of generating units are nonconvex
because of the valve-point loading effects [5], and multiple fuels
[6]. Thus, the essentially nonconvex optimization problem cannot
be directly solved by the above mentioned algorithms. The
dynamic programming [7] could handle the problem, but the curse
of dimensionality limits the feasibility of the method. Intelligent
algorithms are the most efficient techniques to solve nonconvex
optimization problems. They mainly include the genetic algorithm
(GA) [8,9], the particle swarm optimization (PSO) [10], the

simulated annealing algorithm (SA) [11], and several other algo-
rithms [12,13]. The nonconvex optimization problem can be
resolved by providing a center node to collect the global informa-
tion of all generators and to control the optimization. However,
several main drawbacks make these algorithms unsuitable for
application in the future power grid (smart grid). First, the central-
ized controller requires high bandwidth communication infras-
tructures and a high level of connectivity, and it is sensitive to
the single point of the failure and modeling error [14–16]. Second,
the future power grid and the communication network tend to
have a variable topology, which significantly reduces the efficiency
of the algorithms. Furthermore, the plug-and-play requirement of
the smart grid [17,18] is difficult to satisfy in a central fashion.

In a smart grid, the economic dispatch problem must be solved
in distributed ways [19]. On the one hand, the distributed algo-
rithms can fully utilize the sparse communication topology and
limited communication infrastructures, because every unit only
requires communicating with its neighbors. On the other hand, dis-
tributed algorithms can cope with the problems of a variable topol-
ogy network. The distributed incremental cost consensus
algorithm [20,21] which needs the units to control their incremen-
tal cost to a common value in a distributed manner. Similarly, the
distributed gradient methods [22] also have been studied thor-
oughly. Nonetheless, these iterative algorithms require convex
quadratic cost functions. The projected gradient and finite-time

http://dx.doi.org/10.1016/j.ijepes.2017.09.012
0142-0615/� 2017 Elsevier Ltd. All rights reserved.

⇑ Corresponding author at: Key Laboratory of Image Processing and Intelligent
Control, Ministry of Education, Huazhong University of Science and Technology,
Wuhan 430074, China.

E-mail address: wangyw@hust.edu.cn (Y.-W. Wang).

Electrical Power and Energy Systems 95 (2018) 417–426

Contents lists available at ScienceDirect

Electrical Power and Energy Systems

journal homepage: www.elsevier .com/locate / i jepes

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2017.09.012&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2017.09.012
mailto:wangyw@hust.edu.cn
http://dx.doi.org/10.1016/j.ijepes.2017.09.012
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


average consensus algorithms [23] can be applied to a heteroge-
neous system with thermal generators and wind turbines, but
the convex characteristic modeling is still necessary.

Several distributed algorithms [24,25] have been proposed to
solve the nonconvex economic dispatch problem. An optimization
technique in [24] based on market rules and multi-agent systems
was applied to the problem, and a relatively flexible solution
search space was permitted with the improvement of multiple
steps. [25] proposed a composite algorithm combining a meta-
heuristic technique and a flooding-based consensus algorithm that
could solve the nonconvex problem in a decentralized manner.
However, both the optimization approaches required the units to
reach the consensus on certain states at each iteration, such as
the best bid evaluations [24] and the collected information of units
[25]. The process of information spreading, collecting, and updat-
ing for the system consensus are usually time consuming and
may lead to certain complexity in the applications. The plug-and-
play characteristic of the smart grid was not discussed in both
works. In our paper, a distributed auction optimization algorithm
based on the gossip communication mechanism [26,27] is pre-
sented to solve the nonconvex economic dispatch problem. The
gossip communication mechanism runs as two layers. The first
layer triggers the leaders to conduct the local auction optimization,
and the second layer is the auction protocol that selects the opti-
mal neighbors to cooperate with the leaders to implement the auc-
tion decision. The auction protocol is a method of optimization, in
which units evaluate the bids of a certain amount of output power
and the paired bid winners update their output power to reduce
the generation cost. The iterative communication and local opti-
mization produce better solutions. The following are the contribu-
tions of our work.

1. The nonconvex economic dispatch problem considering the
valve-point loading effects and multiple fuels is solved in a fully
distributed way. The plug-and-play requirement of smart grid
can be well satisfied.

2. The proposed algorithm doesn’t require any system consensus
process compared with the proposed one in [24,25]. Such an
advantage has reduced the consensus computation burden for
units.

The rest of this paper is organized as follows. The nonconvex
economic dispatch problem is formulated in Section 2. Section 3
illustrates the proposed distributed method. In Section 4, numeri-
cal simulation tests are conducted to verify the efficiency of the
method and the results are also showed to clarify some key factors
affecting the algorithm, and the plug-and-play characteristic is also
simulated. Conclusions are given in Section 5.

2. Problem formulation

The economic dispatch problem minimizes the total generation
cost f ðpÞ which is the sum of the generation cost f iðpiÞ of unit i
given below.

min f ðpÞ ¼
Xn
i¼1

f iðpiÞ; ð1Þ

subject to

Xn
i¼1

pi ¼ PD; ð2Þ

li 6 pi 6 ui; i ¼ 1;2; . . . ;n; ð3Þ
where PD denotes the system load demand, and

piðp ¼ ½p1; p2; . . . ;pn�TÞ; liðl ¼ ½l1; l2; . . . ; ln�TÞ;uiðu ¼ ½u1;u2; . . . ;un�TÞ is
the actual output power, lower power bound and upper power
bound of generator unit i. The generation cost f iðpiÞ is convention-
ally expressed in the following quadratic form [3].

f iðpiÞ ¼ aip2
i þ bipi þ ci; ð4Þ

where ai;bi; ci are the cost coefficients of generator unit i. Eq. (2) rep-
resents the supply-demand balance constraint, in which the total
outputpower

Pn
i¼1f iðpiÞof all units has tomeet thepowerdemandPD.

However, the actual unit cost function is usually nonconvex.
The generator cost function is usually obtained from data points
taken during ‘‘heat run” tests, when input and output data are
measured as the unit is slowly varied through its operating region.
Wire drawing effects, occurring as each steam admission valve in a
turbine starts to open, produce a rippling effect on the unit curve
[6]. The practical cost model of generating units must conclude
the valve-point effects for accurate analysing, and the expression
(4) should be reformulated as below:

f iðpiÞ ¼ aip2
i þ bipi þ ciþ j ei sinðuiððli � piÞÞÞ j; ð5Þ

where ei and ui are the cost coefficients of ith generator with the
valve-point loading effects. The generating units are usually supplied
withmultiple fuel sources, so the cost function of the units should be
representedwith several piecewise quadratic functions [2]. Once the
valve-point loading effects and multiple fuels option are considered,
the exact cost model of generating units is formulated as below.

f iðpiÞ ¼

aip2
i þbipiþciþ j ei sinðuiððli�piÞÞÞ j; for fuel 1; li 6 pi 6 pi1;

aip2
i þbipiþciþ j ei sinðuiððli�piÞÞÞ j; for fuel 2;pi1 < pi 6 pi2;

� � �
aip2

i þbipiþciþ j ei sinðuiððli�piÞÞÞ j; for fuel k;piðk�1Þ < pi 6ui:

8>>>><
>>>>:

ð6Þ

Nomenclature

ai;bi; ci; ei;ui the coefficients of cost function for generation
unit i

DP power mismatch between the load and total output
power

e error limit of the power mismatch
deck reference cost of power decreasing
f ðpÞ the total cost function of all the generation units
f iðpiÞ the cost function of generation unit i with output power

pi
inck reference cost of power increasing
l ¼ ½l1; l2; . . . ; ln�T lower limits for output power of generation

units 1,2,. . .,n

ldeck total cost reduction when leader’ power output decreas-
ing while followers’ power output increasing

linck total cost reduction when leader’ power output increas-
ing while followers’ power output decreasing

Ni the neighbors set of the unit i
p ¼ ½p1;p2; . . . ; pn�T output power of generation units 1,2,. . .,n
PD the system load
s a random amount of power designed by the leaders
scale a parameter to control s
u ¼ ½u1;u2; . . . ;un�T upper limits for output power of generation

units 1,2,. . .,n
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