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a  b  s  t  r  a  c  t

In this  paper,  we introduce  a new  global  optimization  method  and  study  its global  convergence  prop-
erty  through  theoretical  and experimental  approaches.  The  proposed  method  is named  as  multivariant
optimization  algorithm  (MOA)  because  the  intelligent  searchers,  which  are  called  as  atoms,  not  only  are
divided  into  multiple  subgroups  but also are  variant  in  responsibility.  That is, global  atoms  explore  the
whole  solution  space  in the  hope  of finding  potential  areas where  local  atoms  start  the  local  exploitation.
The  proposed  method  is  characterized  by  two  important  features.  On  one  hand,  global  atoms  do  the
global  exploration  in  each  loop  to  jump  out  from  local  traps.  On the  other  hand,  global  and  local  atoms
conduct  the  global  exploration  and  the  local  exploitation  according  to  their  own  responsibility,  respec-
tively.  These  features  contribute  to increasing  the  chance  of  converging  to the  global  best.  To  study  the
convergence  property  of  MOA,  we carried  out  the  convergence  analysis,  numerical  optimization  exper-
iments  and the  shortest  path  planning  experiments.  And  the  results  demonstrate  that  MOA  is  globally
convergent  and  superior  to the compared  methods  in the  global  convergence  accuracy  and  probability  in
solving complex  challenging  problems  which  have  one  or  more  features  such  as  deceptiveness,  randomly
located optimum,  asymmetry  or  multiple  traps.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Global optimization algorithms are designed to deal with opti-
mization problems with multiple local extremal solutions [1]. In
this study, we address the solution of the global optimization prob-
lem min  f (�x) where �x ∈  RN , f : RN → R  is a given objective function,
N is the dimension of a problem. A global optimization algorithm is
utilised to seek a solution �x∗ ∈ S ⊆ RN such that f (�x∗) ≤ f (�x), ∀�x ∈  S,
where the solution space S is some region of RN . Such a solution �x∗
is called a global minimum or a global optimum. A solution �x′ is a
local minimum (trap) in a local neighborhood S0⊂ S if f (�x′) ≤ f (�x),
∀�x ∈ S0.

The “basic” versions of particle swarm optimization (PSO),
genetic algorithm (GA), differential evolution (DE) and firefly
algorithm (FA) [2] are widely regarded as classical global opti-
mization algorithms, since they have many advantages such as
briefness, compact and fast convergence speed [3,4]. A compact
differential evolution (cDE) algorithm ne-cDE was proposed to effi-
ciently perform an optimization process despite a limited memory

∗ Corresponding author.
E-mail address: xlshi@ynu.edu.cn (X. Shi).

requirement in [5]. However, a high likelihood of being trapped
into local optima limits their performance [6]. The proper control
of the global exploration and the local exploitation is critical to
the global convergence probability of a global optimization algo-
rithm [7]. However, there exists a contradiction between the global
exploration and the local exploitation because a single swarm is
responsible for both the global exploration and the local exploita-
tion, in these “basic” algorithms [8]. As a result, a user has to balance
the contradiction carefully to achieve a good performance [9].

Focusing on increasing the probability of locating the global
optimum among numbers of local traps, different strategies were
proposed and discussed. Most studies address the performance
improvement of PSO, GA or DE through endowing with auxil-
iary local search, parameter adaptation or scalability strategies,
which are briefly reviewed below. (1) Auxiliary local search:
Dynamic multi-swarm PSO with harmony search (DMS-PSO-HS)
is developed through combining the exploration capabilities of the
dynamic multi-swarm particle swarm optimizer (DMS-PSO) with
the stochastic exploitation of the harmony search (HS) algorithm
[10]. A probabilistic memetic framework (APrMF) is a probabilis-
tic memetic algorithm, which is able to analyze the probability of
evolution or individual learning [11]. Global and local real-coded
GA (HRCGA) is proposed by means of the parent-centric crossover
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operators [12]. (2) Parameter adaptation: A new PSO version with
adaptive ω,  �1, and �2, called adaptive PSO(APSO), was proposed by
Zhan et al., recently [13]. In APSO, four evolutionary states, includ-
ing exploitation, exploration, convergence, and jumping out, are
defined. Self-learning PSO (SLPSO) is an improved version of APSO.
In SLPSO, each particle has a set of four strategies to cope with
different situations in the search space [14]. By considering a time-
varying population topology, the velocity update mechanism in
fully informed PSO [15], and a decreasing inertia weight, Franken-
stein’s PSO (FPSO) was  proposed in [16]. The covariance matrix
adaptation evolution strategy algorithm (G-CMA-ES) employs a re-
start mechanism and an increasing population size strategy [17].
J-adaptive differential evolution (JaDE) is proposed by implemen-
ting a new mutation strategy “DE/current-to-pbest” with optional
external archive and updating control parameters in an adaptive
manner [18]. By means of learning from their previous experi-
ences in generating promising solutions, a self-adaptive differential
evolution (SaDE) algorithm, in which both trial vector generation
strategies and their associated control parameter values are gradu-
ally self-adapted, was proposed [19]. (3) Scalability: comprehensive
learning particle swarm algorithm (CLPSO) was proposed by using
a novel learning strategy whereby all other particles’ historical best
information is used to update a particle’s velocity [20].

These improved methods, have shown a superiority over the
“basic” algorithms in solving problems with lots of local traps
[21–23,10]. However, the attractiveness in these improved meth-
ods may  mislead intelligent searchers to move into a local optimum
when solving deceptive functions. The reason is that the global min-
imum lies in a very narrow basin of attraction and at the same time
there exists a strong local minimum with a wide basin of attrac-
tion in deceptive functions such as the Damavandi function [24].
So, these improved methods have difficulty in locating the global
minimum of deceptive functions.

In this paper, a new “basic” heuristic search framework
named multivariant optimization algorithm (MOA) is introduced
to increase the global convergence probability in solving complex
challenging problems. In MOA, the intelligent searchers (named as
atoms) are divided into two categories according to their different
responsibilities. They collaborate to search the solution space based
on the historical searching information which is obtained by atoms
and managed by a data structure. The data structure remembers
and shares the historical useful searching information selectively.
In each loop of MOA, a group of global atoms explore the whole
solution space to locate areas which are more potential than those
remembered by the data structure. Then, a group of local atoms
exploit each potential area remembered by the data structure for
a local refinement. After enough numbers of iteration, the global
optimum is recorded in the data structure. From the brief descrip-
tion of MOA, it can be seen that a feature of this proposed method is
that the global exploration is executed in each loop, which lessens
the probability of being trapped into the local optima. Another is
that multivariant search groups carry out the global exploration
and the local exploitation respectively, which settles the contra-
diction between the global exploration and the local exploitation.
These features make it a well-suited approach for solving global
optimization problems with multiple local optima.

The purpose of this work is twofold. First, a new “basic” stochas-
tic heuristic global optimization method was proposed. Further,
we study the global convergence property of the proposed method
through the convergence analysis, numerical optimization experi-
ments and the shortest path planning experiments.

In the following sections, we describe the MOA  method and
prove that MOA  is globally convergent. Then, MOA  is compared
with several state-of-the-art algorithms on twenty-three complex
benchmark functions. The results suggest that MOA  has a better
performance in the global convergence accuracy and probability

than the compared methods in solving complex challenging prob-
lems which are characterised by deceptiveness, randomly located
optimum, asymmetry or multiple traps. Finally, MOA  is used to
solve the shortest path planning problems to assess the conver-
gence property of MOA  in application oriented problems.

2. Multivariant optimization algorithm

In this section, we  present the MOA  method for solving global
optimization problems, introduce the data structure used to man-
age the communication and cooperation among multivariant
search groups and describe the search strategy of MOA.

Without loss of generality, we  take the solution space S
as the hyperrectangle S = {�x = (x1, . . .,  xN)|min

i
≤ xi ≤ max

i
, (i =

1, . . .,  N)} where min
i

and max
i

are the lower and upper bounds

of the ith dimension of the solution space, respectively. The
global optimization problem considered in this paper is: find �x∗ =
argmin{f (�x)|�x ∈ S}, where f is a given objective function.

In MOA, intelligent searchers called atoms search the solution
space through cooperating with each other based on a data struc-
ture illustrated in Fig. 1. To simplify the description, we  name the
horizontal and vertical sorted doubly linked list as the queue and
stack, respectively.

MOA  is a stochastic heuristic optimization algorithm, where
each iteration consists of two  phases: a global exploration phase
and a local exploitation phase. In the global exploration phase,
global atoms explore the whole solution space randomly to produce
a diverse set of potential areas. In the local exploitation phase, local
atoms exploit each potential areas gained in the previous search for
local refinements. The pseudo-code of MOA  is outlined in Table 1,
where

• TL is a temporary list used to record the newly generated global
atoms and their fitness values;
• TN is a temporary node used to record a newly generated local

atoms and its fitness value;
• DS is the used date structure;
• DS(i,  j) is the jth node from the top in the ith stack;
• DS(i, j).A is an atom recorded in DS(i, j) and DS(i, j).Fv is its fitness

value;

In step 1, new global search atoms explore the whole solution
space according to:

atomg = {unifrnd(min
1

, max
1

), . . ., unifrnd(min
N

, max
N

)} (1)
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Fig. 1. Data structure of multivariant optimization algorithm.
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