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a b s t r a c t

This proposal is intended to extend the field of application of an extremely efficient power flow algorithm
used in radial and weakly meshed grids, the so-called Direct Approach (DA) method. In this work the
method is broadened with the possibility of handling shunt admittances, transformers with taps, and
phase shifting transformers. While the integration of the two former elements in the DA solver is quite
straightforward, the use of phase shifting transformers is far from obvious due to their inherent non-
symmetrical admittance matrix. Thus, a model for phase shifting transformers is proposed in this contri-
bution, which allows the use of the DA method in grids that include such devices. A set of case studies is
conducted in the contexts of a balanced industrial grid and a standard testbed to demonstrate the validity
of the proposal.
� 2017 The Authors. Published by Elsevier Ltd. This is anopenaccess article under the CCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Power flow solvers are an essential tool in the operation and
planning of power systems. They allow the assessment of voltage
profiles, power flows and losses in the grid, and thus, they are cru-
cial to detect unacceptable voltage deviations and identify over-
loaded components. Furthermore, power flow algorithms are
used to conduct reliability studies and foresee the impact of future
demand [1,2].

The most traditional power flow methods such as Newton-
Raphson and Gauss-Seidel, used widely in transmission systems,
do not offer the best performance and robustness when applied
to the distribution level [3]. This is due to the especial nature of
the distribution network, characterized by a radial or weakly
meshed topology and a high R=X ratio. Several approaches have
been proposed in order to deal with these particular features, such
as the implicit Z-bus Gauss method [4] and backward-forward
sweep methods [5,6]. In the latter group, a very efficient formula-
tion called the direct approach (DA) was proposed in [7]. The DA
method avoids the time-consuming tasks of LU factorization and
forward and backward substitution of the Jacobian or admittance
matrices, which are a commonplace in traditional formulations.
The characteristics of DA method make it ideal for real-time appli-
cations in the smart grid context. In [8], the DA solver is used in the
core of an optimal power flow (OPF) algorithm to provide refer-
ences to a distribution FACTS in an industrial grid. High update

rates are needed in this type of applications and the DA solver
accommodates perfectly to this requirement.

The three-phase approach used in [7] takes series self-
impedances and mutual couplings into consideration; however,
shunt admittances are neglected. Even if that assumption can be
enough to run a power flow analysis at the lowest voltage levels
of the distribution grid, characterized by short-length lines and
untapped transformers, ignoring shunt admittances strongly limits
the application of the method to higher voltage levels. The exten-
sion of the method to accommodate medium-length lines and
transformers with tap changers in a balanced environment is pre-
sented in this paper. Though no previous references to this use
have been found, its application is fairly straightforward.

In a pure radial grid, a post-processing of the voltage phase
angles after the application of the power flow solver is enough to
account for the transformer phase shift. However, if a weakly
meshed grid is to be considered, this method is no longer valid.
Thus, a model of the phase shifting transformer, both to consider
specific devices used to control the active power flow in the loop
and to include the phase shift of common power transformers, is
mandatory. Modeling of phase shifting transformers in power flow
studies is a non-trivial problem, as they cannot be represented by a
pi-equivalent component due to their inherent asymmetric admit-
tance matrix [1]. A set of different phase shifting transformer mod-
els is available for application in various fields of study, to both
steady state [9–13] and transient simulation [14]. In [15], a survey
on phase shifting transformer models for steady state analysis is
presented; however, none of them are expressed in a suitable form
to be embedded in the DA solver. In this work, a new model is pro-
posed to overcome this limitation.
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The DA method, as described in [7], is presented in Section 2 for
the benefit of the reader. Section 3 presents a straightforward
method to include shunt admittances in the DA solver. Thus, those
components capable of being represented by pi-equivalent models,
such as medium-length lines and transformers with tap changers,
can be easily included in the problem. In Section 4, the new phase
shifting transformer model is presented together with minor mod-
ifications to be performed in the DA algorithm. Three case studies
are presented in Section 5 in order to illustrate the implementation
procedure and demonstrate the validity of the proposal. Finally,
Section 6 summarizes the most important results of this study.

2. Direct approach power flow

The method to be proposed in this contribution is based on the
DA formulation of the power flow problem [7]. This is a technique,
especially designed for radial networks, inspired by well-known
backward-forward sweep methods such as Ladder Iterative Tech-
nique [6]. DA provides a very compact vectorized formulation with
excellent computational and convergence characteristics.

In the application of DA to balanced grids, lines and transform-
ers are modeled as series impedances, zik, as it is shown in Fig. 1.
The equivalent bus current injection vector, Ig , is calculated from
the power injection at each bus, i, given the estimation of the
bus voltage vector V at iteration ðnÞ as

IðnÞgi ¼ Pi � jQ i

conjðV ðnÞ
i Þ

: ð1Þ

Assuming a radial grid, the branch current vector can be calcu-
lated as

BðnÞ ¼ BIBC � IðnÞg ; ð2Þ

where BIBC is the so-called bus-injection to branch-current matrix.
The entry BIBCbi equals 1 if the current injection of node i con-
tributes to the branch current Bb, and equals 0 otherwise. Finally,
a better approximation to the voltage profile can be obtained from

DV ðnþ1Þ ¼ BCBV � BðnÞ; ð3Þ
where BCBV is the branch-current to bus-voltage matrix. The entry
BCBVib equals the series impedance of branch b if that branch is in
the path from node i to the slack bus, and equals 0 otherwise. DV
is a vector with the voltage of the slack bus referred to the different
bus voltages. An improved approximation to the state variables is
subsequently obtained by

V ðnþ1Þ ¼ Vs � DV ðnþ1Þ; ð4Þ
where Vs is a column vector with the slack bus voltage at each
entry.

Starting from a flat voltage profile, the solution of the distribu-
tion power flow is reached by solving (1)–(4) iteratively up to a
specified convergence threshold.

In order to include the treatment of meshes in the network,
Teng [7] proposes minor modifications to be conducted in the

definition of BIBC and BCBV and in the solution technique. A brief
summary of these changes can be described as:

� Specific branches are selected to break the meshed grid into a
radial network. Then, new entries are included in the current
injection vector to account for the currents at the selected

branches, i.e. ½IgBnew�T .
� The BIBC matrix is built as in the base case, by considering the
currents of the branches used to break the network as addi-
tional current injections. However, entries with the value �1
appear now to account for the contribution of the receiving
node of the branches used to break the network due to the
inverted current reference. Notice that the double-sided contri-
bution of the sending and receiving nodes of a branch used to
break the network, Bc , to the current of those branches
upstream from the first common parent node, Bb, is null, as they
have the same value but opposite references.
Additionally, new rows are added to the BIBCmatrix with a sin-
gle non-null entry in order to identify the currents of the
branches used to break the network. Taking all this into account
the modified BIBC matrix can be obtained as

B
B new

� �ðnÞ
¼ BIBC � Ig

B new

� �ðnÞ
: ð5Þ

� The BCBVmatrix is built as in the base case, but a new row is
added for each loop in the grid to account for KVL. The impe-
dances included in the entries of the new rows of the matrix
are signed positive or negative according to the reference of
the current at the different branches. Then, (3) is reformu-
lated as

DV
0

� �ðnþ1Þ
¼ BCBV � B

B new

� �ðnÞ
: ð6Þ

� By using (5) and (6) and rewriting the resulting matrix,
it follows that

DV
0

� �ðnþ1Þ
¼ BCBV � BIBC � I

B new

� �ðnÞ
¼ A P

M N

� �
I

B new

� �ðnÞ
:

The application of Kron reduction to (7) leads to

DV ðnþ1Þ ¼ ðA�MTN�1MÞIðnÞg : ð7Þ

The iterative use of (1), (7) and (4), in this order, allows the
application of the DA method to weakly meshed grids.

3. Including pi-equivalent models

The DA method in [7] models the lines and transformers in bal-
anced systems by simple series impedances. While this is accept-
able for short-length lines and untapped transformers, minor

Fig. 1. Scheme used in the DA method. Fig. 2. Pi-equivalent line model.
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