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a b s t r a c t

The paper studies the choosing mechanism of an energy company which gathers a library of electric load
models and at every day chooses the best one for daily prediction. We use a combination of a semi-
Markov process and a modified hidden Markov chain to describe the joint curve of loads, the daily best
model, and exogenous information, of which temperature is an important factor. By extending the state
space of the semi-Markov process, then in a computationally tractable way, the problem is embedded
within a hidden Markov chain. Hence we can establish an EM algorithm and an enhancing statistical
learning method for estimating parameters and forecasting load. Simulation reveals the range in which
the proposed algorithm is applicable. Examples from real world datasets show that the proposed auto-
mated system is an alternate method for short term electric load forecasting with loads greater than a
few hundreds MW. Supplementary material includes scripts of the proposed system and a guide of the
scripts.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

There are manymodels for electric load forecasting over periods
from an hour to several years. The models include different tradi-
tional regression methods, and many new non-conventional statis-
tical techniques such as generalized additive models [4] and
random forests [2], and many soft computing techniques such as
neural networks [10] and support vector machines. [11] reviews
important theoretical methods and industry practice on electric
load models selected from thousands of papers. Many successful
models can attain about a few percent of error when forecasting
over a short-term period. Nevertheless, because the storage of elec-
tricity wants much extra costs, electric load modeling is still an
important issue, and an energy company often hires a team of
experts to develop models and to forecast electric loads.

Such experts maintain a library of electric load models. In fact,
electric loads as well as the corresponding mechanisms are not the
same for different seasons, and we need different models to
describe such different mechanisms. Moreover, theoretical and
systematic discrepancies between models imply that a model usu-
ally prevails in some proper conditions. Choosing the best model
from the library is another important and daily work of experts.

An expert always carefully examines recent electric loads, tempo-
ral and meteorological factors, and other exogenous data, then
decides the final choice based on the feature of a model, in accor-
dance with his or her experience.

We will substitute an automated system for the preceding man-
ual process. As the issue is complex, some pretreatment of
detrending techniques [11,14] is indispensable. Then the preceding
manual process of a choice is a successor to the similar day method
[11], which forecasts a future load using the historical days with
similar profiles. With a big dataset, we can identify many similar
profiles and a type of profile emerges in the investigation. Different
types of profiles gradually evolve into different models. The theory
of Markov chain provides us with a natural framework for such
models [18]. For example, suppose that the chance of a model
tomorrow depends on previous models through the last two days.
We set the state at a day is determined by models during both the
day and the previous day, and then the evolution of states becomes
a Markov chain. A careful investigation into the library of models
and auxiliary variables may help to establish a concise Markov
chain [15].

Denoting the time by t, there is a specific models Xt connecting
the forecast of the load Lt to the neighboring Lt�1; Lt�2; . . ., the tem-
perature Tt�1, and other meteorological factors. Based on datasets
from several Chinese energy companies, we find that each state
of the model Xt depends strongly on the previous state, but the
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durations at a state are not geometric distributed. Hence, a semi-
Markov process is a good framework for Xt .

Then the issue can be described as a combination of a semi-
Markov process and a hidden Markov chain, and our task be to
adapt the theory of hidden Markov chains to the case of an under-
lying semi-Markov chain. By exploring ideas of interrelated models
such as variable duration and length Markov models [3,15], we
extend the states of the semi-Markov process Xt and build a Mar-
kov chain for the model Xt . The idea is similar to [3,15] where
semi-Markov processes with a few states are involved, and we
develop a set of techniques based on Coxian distributions and
the Akaike information criterion [1] to handle a lot states
efficiently.

The rest of the article is organized as follows. In Section 2, we
establish our model which is a combination of hidden Markov
chains, semi-Markov chains, and discrete Coxian random variables.
Some mathematical details of Section 2 are presented in Appendix.
By using several simulations, Section 3 explores the range in which
the proposed algorithm is applicable. In Section 4, real world
examples show that the proposed method is practical for electric
load forecasting with loads greater than a few hundreds MW. Sec-
tion 5 concludes the paper.

2. Method

In general, dependencies of the detrending data Lt ; Tt;Xt are
intricate. The phenomenon is also pointed out by [19] and refer-
ences therein. Fortunately, we notice that the error dt , which is
the difference Lt � L�t between the load Lt and the corresponding
prediction L�t based on a given model Xt as well as neighboring
loads and temperatures, is often independent of the history of
the data ds; Ts;Xs; s < t. For continual long observation, the dataset
of fdt ; Tt ;Xtg gives us the same information about fLt ; Tt ;Xtg.
Hence, we can focus on the variables fdt; Tt ;Xtg without loss of
generalization. For convenience and to concentrate attention on
the issue, we assume that given a model Xt , the conditional distri-
bution of temperature Tt and error dt is independent of the history
of the data ds; Ts;Xs; s < t. Moreover, replacing temperature by
another appropriate index suggested by [13,19] as well as other
researchers, is not difficult.

Our data include overall a library ff 1; . . . ; f Mg of models and four
vectors of length N of variables: temperature T1:N ¼ ðT1; . . . ; TNÞ,
load L1:N ¼ ðL1; . . . ; LNÞ, error d1:N ¼ ðd1; . . . ; dNÞ, and model
X1:N ¼ ðX1; . . . ;XNÞ. For a model Xt ¼ i, the corresponding f i in the
library results in a prediction L�t ¼ f iðTt ; Lt�1; Lt�2; . . .Þ to load Lt
and we have error dt ¼ Lt � L�t . The goal is to: (1) estimate the joint
distribution PðT1:N; d1:N;X1:NÞ and (2) predict a new load LNþ1 and its
corresponding error dNþ1 given a new temperature TNþ1, based on
the joint distribution PðT1:N; d1:N;X1:NÞ.

2.1. Generalized hidden Markov chains

The model decomposes the data and the corresponding joint
distribution PðT1:N; d1:N;X1:NÞ into three components:

(1) An initial distribution of the model, p ¼ ðp1; . . . ;pMÞ where
pi ¼ PðX1 ¼ iÞ. If X1 is a given model i, then pi ¼ 1 and
pj ¼ 0 for j– i.

(2) A transition probability matrix of the time-homogeneous
Markov chain X1:N;A ¼ ðai;jÞ where ai;j ¼ PðXtþ1 ¼ jjXt ¼ iÞ.

(3) A set of time-homogeneous multivariate probability density
functions (pdf) G ¼ ðg1ðd; tÞ; . . . ; gMðd; tÞÞ where
giðd; TÞ ¼ Pðdt ; Tt jXt ¼ iÞ is the conditional pdf of dt; Tt given
Xt ¼ i.

Differing from the classical hidden Markov chains [18], where it
is difficult and complex task to estimate model parameters p;A;G,
we have both signal data T1:N; d1:N and underlying model data X1:N ,
and hence we can easily obtain estimators. Typically, we estimate
p by empirical frequency of X1:N , and estimate an element ai;j of the
transition matrix A by the empirical frequency of transitions from
state i to j. Moreover, we can estimate every giðd; TÞ based on dt ; Tt

such that Xt ¼ i. Finally, from the estimated model parameters,
constructing the joint distribution PðT1:N; d1:N;X1:NÞ is a trivial issue.

PðT1:N ; d1:N ;X1:NÞ ¼ pX1

YN�1

t¼1

aXt ;Xtþ1

YN
s¼1

gXs
ðds; TsÞ: ð1Þ

Our another goal is the forecasting of out-of-sample load LNþ1,
and we can not simply follow the forward-backward algorithm
[17] because we must use a new temperature TNþ1 as well as the
sample data T1:N; d1:N , and X1:N . Nowadays, observatories report
the future temperature accurately, and the exogenous information
can improve the forecast remarkably. Hence, it is worthwhile
establishing a new statistical learning method for a problem
involving TNþ1. In the following, we will solve the problem step
by step.

First, as discussed in Section 2, the dataset of fdt; Tt ;Xtg gives us
the same information about fLt ; Tt ;Xtg in our case. Hence the pre-
diction to load LNþ1 can be described by the following formula in
terms of our variables dt ; Tt ;Xt .

E½LNþ1jTNþ1; T1:N ; L1:N;X1:N� ¼ E½LNþ1jTNþ1; T1:N ; d1:N ;X1:N�: ð2Þ
Moreover, we have LNþ1 ¼ L�Nþ1 þ dNþ1. And there is a tractable

formula

L�Nþ1 ¼ f iðTt ; Lt�1; Lt�2; . . .Þ;
given that the out-of-sample model XNþ1 ¼ i is known as well as
TNþ1; T1:N; d1:N;X1:N . Therefore, we compute the expectation in (2)
by conditioning on XNþ1. That is, to calculate the expectation, we
take a weighted average of the conditional expectation
E½LNþ1jTNþ1;XNþ1 ¼ i; T1:N ; d1:N;X1:N� given that XNþ1 ¼ i, and every
term is weighted by the corresponding probability P½XNþ1 ¼ ijTNþ1;

T1:N; d1:N;X1:N�. That is,
E½LNþ1jTNþ1; T1:N ; d1:N;X1:N�

¼
XM
i¼1

PðXNþ1 ¼ ijTNþ1; T1:N ; d1:N ;X1:NÞ � f iðTt; Lt�1; Lt�2; . . .Þð

þ EðdNþ1jTNþ1;XNþ1 ¼ i; T1:N; d1:N;X1:NÞÞ: ð3Þ

List of variables

Lt ; Tt load and temperature at time t
Xt ¼ i forecasting model i is chose at time t
f ið�Þ specific forecasting function in the ith model
N number of historical data. N þ 1 is the forecasted day
M number of models in a library. 1; . . . ;M is the state space

of Xt

dt error. Difference between the true load and its forecast-
ing value

LNþ1 load at next day. Our goal is the forecasting of it
T1:N ; L1:N ;X1:N historical dataset of temperature, load, and model
T1:N ; d1:N ;X1:N Alternative historical dataset, which provides with

the same information about T1:N ; L1:N ;X1:N in our case
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