
Applied Soft Computing 48 (2016) 254–264

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l ho me page: www.elsev ier .com/ locate /asoc

A genetic algorithm for the minimum generating set problem

Manuel Lozanoa, Manuel Lagunab, Rafael Martí c, Francisco J. Rodríguezd,∗,
Carlos García-Martíneze

a Department of Computer Science and Artificial Intelligence, University of Granada, Granada, Spain
b Leeds School of Business, University of Colorado, Boulder, USA
c Department of Statistics and Operations Research, University of Valencia, Valencia, Spain
d Department of Computer Science, University of Extremadura, Mérida, Spain
e Department of Computing and Numerical Analysis, University of Córdoba, Córdoba, Spain

a r t i c l e i n f o

Article history:
Received 28 September 2015
Received in revised form 6 July 2016
Accepted 11 July 2016
Available online 20 July 2016

Keywords:
Minimum generating set problem
Genetic algorithms
Multiple knapsack problem
Real-parameter crossover operator

a b s t r a c t

Given a set of positive integers S, the minimum generating set problem consists in finding a set of positive
integers T with a minimum cardinality such that every element of S can be expressed as the sum of a
subset of elements in T. It constitutes a natural problem in combinatorial number theory and is related
to some real-world problems, such as planning radiation therapies.

We present a new formulation to this problem (based on the terminology for the multiple knapsack
problem) that is used to design an evolutionary approach whose performance is driven by three search
strategies; a novel random greedy heuristic scheme that is employed to construct initial solutions, a
specialized crossover operator inspired by real-parameter crossovers and a restart mechanism that is
incorporated to avoid premature convergence. Computational results for problem instances involving up
to 100,000 elements show that our innovative genetic algorithm is a very attractive alternative to the
existing approaches.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The minimum generating set (MGS) problem, a natural problem
in combinatorial number theory [1], is defined as follows: given a
set of positive integers, S = {s1, . . ., sn}, the problem consists of find-
ing a minimum cardinality set of distinct integers T = {t1, . . ., tm},
called generating set, such that every element of S is equal to the sum
of a subset of T. The MGS problem has been shown to be NP-hard [1],
and is related, among other problems, to planning radiation thera-
pies [2–4]: the elements of S represent radiation dosages required
at various points, while an element of T represents a dose delivered
simultaneously to multiple points. Then, the objective is to find the
set of doses that properly combined (subsets of T), produces the
initial requirements (S). Other variants, namely the cases in which
the elements of T can be negative or fractional, were considered
elsewhere [5,6].

The greedy algorithm presented by Collins et al. [1] is the unique
proposed approach for the MGS problem so far. Its idea is to rep-
resent the largest set of integers si by means of the combination of
other integers sj, previously accepted solution components tk, and a

∗ Corresponding author.

new candidate solution component d. The process is repeated until
all the integers si ∈ S have a representation based on solution com-
ponents. Fagnot et al. [7] gave some elementary properties of the
minimum 2-generating set, a natural restriction of the MGS prob-
lem where each element of S must be represented by the sum of
at most two elements from T, and proved its hardness. However,
surprisingly, not a single metaheuristic approach has been applied
so far (to our knowledge) to tackle the problem from a practical
point of view. This fact was our main motivation for the develop-
ment of a genetic algorithm (GA) that aims at optimizing the MGS
problem. GA is a well known metaheuristic that has proved to be
very effective in solving hard optimization problems [8,9].

In GA, a population of candidate solutions, called chromo-
somes, evolves over successive generations using three genetic
operators: selection, crossover, and mutation. First of all, based
on some criteria, every chromosome is assigned a fitness value,
and then the selection mechanism is invoked to choose relatively
fit chromosomes to be part of the reproduction process. Then,
new chromosomes are created through the crossover and mutation
operators. The crossover generates new individuals by recombining
the characteristics of existing ones, whereas the mutation operator
is used to maintain population diversity with the goal of avoiding
premature convergence.

http://dx.doi.org/10.1016/j.asoc.2016.07.020
1568-4946/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2016.07.020
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2016.07.020&domain=pdf
dx.doi.org/10.1016/j.asoc.2016.07.020

M. Lozano et al. / Applied Soft Computing 48 (2016) 254–264 255

The proposal presented in this paper to successfully address the
MGS problem rests on four pillars:

• We redefine the MGS problem using the terminology employed
in the well-known multiple knapsack (MK) problem, which has
been extensively studied within this class of algorithms.

• We devise a randomized greedy procedure specifically designed
for generating feasible solutions for the given MGS case in
reasonable computing times. Highly constrained combinatorial
optimization problems such as the MGS problem have proved to
be a challenge for metaheuristic solvers [10]. This is a situation
in which it is difficult to define an efficient neighborhood, thus
no local search is available [11]. Therefore, the incorporation of
specialized constructive greedy heuristics is often necessary in
order to produce practical implementations [10].

• On the basis of the new formulation, we propose a GA approach to
deal with the MGS problem that comprises an initial population
generation method (based on the proposed randomized greedy
algorithm) with the goal of acquiring a population of diversified,
yet adequate quality solutions, and a restart mechanism, substi-
tuting the usual GA mutation, to regenerate population diversity
when chromosomes become very similar.

• In addition, the proposed GA incorporates an innovative spe-
cialized recombination operator, inspired by real-parameter
crossovers [12], which maintains the feasibility and legality of
the offspring as solutions to the problem.

The rest of this paper is organized as follows. Section 2 presents
the MK-based interpretation of the MGS problem, their similar-
ities and differences. Section 3 introduces the new randomized
greedy heuristic for the MGS problem, which constitutes one of
the essential components of the proposed GA. Section 4 describes
the evolutionary approach for the MGS problem. Section 5 provides
an analysis of the GA performance and draws comparisons with the
existing literature. Finally, Section 6 contains a summary of results
and conclusions.

2. The MGS problem as searching objects for knapsacks

In the MK problem, we are given a set of objects O and a set
of knapsacks K. Each object oj ∈ O has a profit, p(oj), and a weight,
w(oj), and each knapsack ki ∈ K has a capacity, C(ki). The objec-
tive in the MK problem is to allocate each object to at most one
knapsack in such a way that the total weight of the objects in each
knapsack does not exceed its capacity and the total profit of all the
objects included in the knapsacks is maximized. Its mathematical
formulation, shown in Fig. 1(left) [13,14], is based on a set of binary
variables xojki , where xojki = 1 indicates that object oj is included in
knapsack ki, and xojki = 0, otherwise. GAs and other metaheuristics
applications to the MK problem and its variants [15–17,14] usually
encode solutions as integer arrays whose lengths are equal to the
number of objects, and the respective ojth element indicates the
knapsack ki where it is included into, or an invalid value if it is not
assigned to any knapsack.

In the MGS problem, the elements si ∈ S may be recognized as
knapsacks with capacities equal to their si values (C(si) = si, ∀ si ∈ S).
Then, the elements in a candidate generating set, tj ∈ T, are objects
that may be inserted in the knapsacks, with weights equal to their
values (w(oj) = tj, ∀tj ∈ T). In this fashion, the objective of the
MGS problem may be reformulated as constructing the smaller set
of objects T, such that every knapsack is completely filled by includ-
ing replicas of different objects from T. Noticing that no integer
value j greater than the maximal element in S, Smax, may belong to
a generating set T, we can reformulate the problem of constructing

the set of objects T as the one of selecting those from the set {1, . . .,
Smax} that will belong to T.

The MK mathematical formulation can be adapted for the MGS
problem as shown in Fig. 1(right). There xjsi = 1 indicates that
integer j contributes to fill knapsack si (xjsi = 0, otherwise); and
consequently, xj must be equal to 1, which expresses that integer j
belongs to the generating set T.

Whereas this knapsack-based interpretation provides a math-
ematical adaptation and a pictorial analogy for the MGS problem,
which is finding objects that properly combined fill all the knap-
sacks, their differences should be clearly remarked:

• The capacity constraints (2) become equality constraints, i.e., the
sum of the weights of the objects in a knapsack must be equal to
its capacity.

• There are not profits, so they disappear from the objective (1).
Additionally, the objective is transformed into a minimization
problem, to reduce the number of created objects.

• Objects may be placed in more than one knapsack, so the con-
straint (3) is not present.

• Knapsacks cannot carry two or more objects with the same
weight, so integers j apply only once in the summation in the
constraint (2).

• Objects must be created for solving the problem, whereas they
are initially given in the MK problem.

This becomes a hard restriction, since the solver has to consider
combinations of every possible object. This can be addressed by
searching in the space of combinations of elements in the set {1,
. . ., Smax}, either exploiting the mathematical formulation (Fig. 1,
right) or applying a metaheuristic with integer arrays for the pos-
sible Smax objects. However, this becomes impractical for large
Smax values. For example, we could not obtain any valid solution
with CPLEX V12.1 and the model in Fig. 1(right) for a random
instance with |S| = 20 and Smax = 4096 after one hour.

Regarding our proposed GA, since the direct adaptation of GAs
for the MK problem to the MGS one is not viable, we will propose
a randomized greedy heuristic that evaluates sets with a restricted
number of samples from {1, . . ., Smax} (Section 3). Our GA will use it
at different stages, namely initialization, restart, and crossover. To
address extremely hard problems, a common strategy concerns to
include heuristic subordinate procedures into the stages of meta-
heuristics [18–20].

Finally, note that given a solution for this reformulated knapsack
problem, i.e. the set of objects (O = {oj}), we may directly obtain a
generating set T for S by building a set with the weight values of
the objects (T = {tj = w(oj), oj ∈ O}).

3. Randomized greedy heuristic

In this section, we propose a randomized greedy heuristic for
the MGS problem, which is called RG-MGS. The design of RG-MGS
(Fig. 2) is specified under the new formulation for the MGS problem
presented in this paper. Therefore, one of its inputs is the set of
knapsacks K associated with S, and the output is the set of created
objects, O.

RG-MGS starts with all the knapsacks empty and constructs one
object at a time, which is added to the current partial solution, O,
until all the knapsacks are completed. Specifically, the algorithm
manages the free spaces in the knapsacks, F = {f1, . . ., fn} (fi stores
the free space in knapsack ki), and creates an object with a weight
value belonging to the set {1, . . ., Fmax} (the weight of the biggest
possible object is equal to the greatest free space in any knapsack,
Fmax) with the aim of minimizing the global free space in the knap-
sacks after the insertion of the new object. To do this, RG-MGS uses

Download English Version:

https://daneshyari.com/en/article/494549

Download Persian Version:

https://daneshyari.com/article/494549

Daneshyari.com

https://daneshyari.com/en/article/494549
https://daneshyari.com/article/494549
https://daneshyari.com

