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a  b  s  t  r  a  c  t

Given  a set  of positive  integers  S, the  minimum  generating  set  problem  consists  in  finding  a set  of positive
integers  T with  a  minimum  cardinality  such  that every  element  of S can  be expressed  as  the  sum  of  a
subset  of elements  in T. It  constitutes  a natural  problem  in  combinatorial  number  theory  and  is  related
to  some  real-world  problems,  such  as  planning  radiation  therapies.

We present  a new  formulation  to this  problem  (based  on the terminology  for the  multiple  knapsack
problem)  that  is used  to design  an  evolutionary  approach  whose  performance  is  driven  by  three  search
strategies;  a novel  random  greedy  heuristic  scheme  that is  employed  to  construct  initial  solutions,  a
specialized  crossover  operator  inspired  by real-parameter  crossovers  and a restart  mechanism  that  is
incorporated  to avoid  premature  convergence.  Computational  results  for problem  instances  involving  up
to 100,000  elements  show  that our innovative  genetic  algorithm  is a very  attractive  alternative  to  the
existing  approaches.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The minimum generating set (MGS) problem, a natural problem
in combinatorial number theory [1], is defined as follows: given a
set of positive integers, S = {s1, . . .,  sn}, the problem consists of find-
ing a minimum cardinality set of distinct integers T = {t1, . . .,  tm},
called generating set,  such that every element of S is equal to the sum
of a subset of T. The MGS  problem has been shown to be NP-hard [1],
and is related, among other problems, to planning radiation thera-
pies [2–4]: the elements of S represent radiation dosages required
at various points, while an element of T represents a dose delivered
simultaneously to multiple points. Then, the objective is to find the
set of doses that properly combined (subsets of T), produces the
initial requirements (S). Other variants, namely the cases in which
the elements of T can be negative or fractional, were considered
elsewhere [5,6].

The greedy algorithm presented by Collins et al. [1] is the unique
proposed approach for the MGS  problem so far. Its idea is to rep-
resent the largest set of integers si by means of the combination of
other integers sj, previously accepted solution components tk, and a
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new candidate solution component d. The process is repeated until
all the integers si ∈ S have a representation based on solution com-
ponents. Fagnot et al. [7] gave some elementary properties of the
minimum 2-generating set, a natural restriction of the MGS  prob-
lem where each element of S must be represented by the sum of
at most two  elements from T, and proved its hardness. However,
surprisingly, not a single metaheuristic approach has been applied
so far (to our knowledge) to tackle the problem from a practical
point of view. This fact was our main motivation for the develop-
ment of a genetic algorithm (GA) that aims at optimizing the MGS
problem. GA is a well known metaheuristic that has proved to be
very effective in solving hard optimization problems [8,9].

In GA, a population of candidate solutions, called chromo-
somes, evolves over successive generations using three genetic
operators: selection, crossover, and mutation. First of all, based
on some criteria, every chromosome is assigned a fitness value,
and then the selection mechanism is invoked to choose relatively
fit chromosomes to be part of the reproduction process. Then,
new chromosomes are created through the crossover and mutation
operators. The crossover generates new individuals by recombining
the characteristics of existing ones, whereas the mutation operator
is used to maintain population diversity with the goal of avoiding
premature convergence.
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The proposal presented in this paper to successfully address the
MGS problem rests on four pillars:

• We redefine the MGS  problem using the terminology employed
in the well-known multiple knapsack (MK) problem, which has
been extensively studied within this class of algorithms.

• We devise a randomized greedy procedure specifically designed
for generating feasible solutions for the given MGS  case in
reasonable computing times. Highly constrained combinatorial
optimization problems such as the MGS  problem have proved to
be a challenge for metaheuristic solvers [10]. This is a situation
in which it is difficult to define an efficient neighborhood, thus
no local search is available [11]. Therefore, the incorporation of
specialized constructive greedy heuristics is often necessary in
order to produce practical implementations [10].

• On the basis of the new formulation, we propose a GA approach to
deal with the MGS  problem that comprises an initial population
generation method (based on the proposed randomized greedy
algorithm) with the goal of acquiring a population of diversified,
yet adequate quality solutions, and a restart mechanism, substi-
tuting the usual GA mutation, to regenerate population diversity
when chromosomes become very similar.

• In addition, the proposed GA incorporates an innovative spe-
cialized recombination operator, inspired by real-parameter
crossovers [12], which maintains the feasibility and legality of
the offspring as solutions to the problem.

The rest of this paper is organized as follows. Section 2 presents
the MK-based interpretation of the MGS  problem, their similar-
ities and differences. Section 3 introduces the new randomized
greedy heuristic for the MGS  problem, which constitutes one of
the essential components of the proposed GA. Section 4 describes
the evolutionary approach for the MGS  problem. Section 5 provides
an analysis of the GA performance and draws comparisons with the
existing literature. Finally, Section 6 contains a summary of results
and conclusions.

2. The MGS  problem as searching objects for knapsacks

In the MK problem, we are given a set of objects O and a set
of knapsacks K. Each object oj ∈ O has a profit, p(oj), and a weight,
w(oj), and each knapsack ki ∈ K has a capacity, C(ki). The objec-
tive in the MK problem is to allocate each object to at most one
knapsack in such a way that the total weight of the objects in each
knapsack does not exceed its capacity and the total profit of all the
objects included in the knapsacks is maximized. Its mathematical
formulation, shown in Fig. 1(left) [13,14], is based on a set of binary
variables xojki , where xojki = 1 indicates that object oj is included in
knapsack ki, and xojki = 0, otherwise. GAs and other metaheuristics
applications to the MK problem and its variants [15–17,14] usually
encode solutions as integer arrays whose lengths are equal to the
number of objects, and the respective ojth element indicates the
knapsack ki where it is included into, or an invalid value if it is not
assigned to any knapsack.

In the MGS  problem, the elements si ∈ S may  be recognized as
knapsacks with capacities equal to their si values (C(si) = si, ∀ si ∈ S).
Then, the elements in a candidate generating set, tj ∈ T, are objects
that may  be inserted in the knapsacks, with weights equal to their
values (w(oj) = tj, ∀tj ∈ T). In this fashion, the objective of the
MGS  problem may  be reformulated as constructing the smaller set
of objects T, such that every knapsack is completely filled by includ-
ing replicas of different objects from T. Noticing that no integer
value j greater than the maximal element in S, Smax, may  belong to
a generating set T, we can reformulate the problem of constructing

the set of objects T as the one of selecting those from the set {1, . . .,
Smax} that will belong to T.

The MK  mathematical formulation can be adapted for the MGS
problem as shown in Fig. 1(right). There xjsi = 1 indicates that
integer j contributes to fill knapsack si (xjsi = 0, otherwise); and
consequently, xj must be equal to 1, which expresses that integer j
belongs to the generating set T.

Whereas this knapsack-based interpretation provides a math-
ematical adaptation and a pictorial analogy for the MGS  problem,
which is finding objects that properly combined fill all the knap-
sacks, their differences should be clearly remarked:

• The capacity constraints (2) become equality constraints, i.e., the
sum of the weights of the objects in a knapsack must be equal to
its capacity.

• There are not profits, so they disappear from the objective (1).
Additionally, the objective is transformed into a minimization
problem, to reduce the number of created objects.

• Objects may  be placed in more than one knapsack, so the con-
straint (3) is not present.

• Knapsacks cannot carry two or more objects with the same
weight, so integers j apply only once in the summation in the
constraint (2).

• Objects must be created for solving the problem, whereas they
are initially given in the MK  problem.

This becomes a hard restriction, since the solver has to consider
combinations of every possible object. This can be addressed by
searching in the space of combinations of elements in the set {1,
. . .,  Smax}, either exploiting the mathematical formulation (Fig. 1,
right) or applying a metaheuristic with integer arrays for the pos-
sible Smax objects. However, this becomes impractical for large
Smax values. For example, we could not obtain any valid solution
with CPLEX V12.1 and the model in Fig. 1(right) for a random
instance with |S| = 20 and Smax = 4096 after one hour.

Regarding our proposed GA, since the direct adaptation of GAs
for the MK  problem to the MGS  one is not viable, we  will propose
a randomized greedy heuristic that evaluates sets with a restricted
number of samples from {1, . . .,  Smax} (Section 3). Our GA will use it
at different stages, namely initialization, restart, and crossover. To
address extremely hard problems, a common strategy concerns to
include heuristic subordinate procedures into the stages of meta-
heuristics [18–20].

Finally, note that given a solution for this reformulated knapsack
problem, i.e. the set of objects (O = {oj}), we may  directly obtain a
generating set T for S by building a set with the weight values of
the objects (T = {tj = w(oj), oj ∈ O}).

3. Randomized greedy heuristic

In this section, we propose a randomized greedy heuristic for
the MGS  problem, which is called RG-MGS. The design of RG-MGS
(Fig. 2) is specified under the new formulation for the MGS  problem
presented in this paper. Therefore, one of its inputs is the set of
knapsacks K associated with S, and the output is the set of created
objects, O.

RG-MGS starts with all the knapsacks empty and constructs one
object at a time, which is added to the current partial solution, O,
until all the knapsacks are completed. Specifically, the algorithm
manages the free spaces in the knapsacks, F = {f1, . . .,  fn} (fi stores
the free space in knapsack ki), and creates an object with a weight
value belonging to the set {1, . . .,  Fmax} (the weight of the biggest
possible object is equal to the greatest free space in any knapsack,
Fmax) with the aim of minimizing the global free space in the knap-
sacks after the insertion of the new object. To do this, RG-MGS uses
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