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1. Introduction

One of the largest problems associated with the operation of
systems in engineering consists in determining the operating con-
ditions required to maintain the stability when perturbations or
situations that may cause collapse occur. Traditionally, the use of
controllers ensures the system’s stability under different operating
conditions, and for that reason the optimum adjustment of the
parameters is a very important matter to be solved. The techniques
used to determine the optimum values of these devices are gener-
ally based on tools that do not consider the system'’s evolution over
time, i.e., they use the deterministic approach.

Operating points defined arbitrarily by the operator are consid-
ered for the adjustment, but they do not necessarily represent the
system’s real dynamics. Furthermore, the traditional approach is
based on the fact that the system’s variation over time is not rep-
resented, and sometimes this does exactly fit reality.

The deterministic approach has certainly had excellent results
in different applications, but it is necessary to incorporate method-
ologies that focus on the need to represent various operating con-
ditions that have self-sustained dynamics over time. An example of
this appears in the operation of Electric Power Systems: the incor-
poration of non conventional renewable energy sources, variation
of consumption, changes in the parameters of the lines at the
transmission level, to mention some. As a function of these data,
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there is the need to model this behavior at the time of adjusting
the parameters of the controllers used in different applications,
which allow the stability of the systems during the operation to
be maintained. The work done presents diverse applications [1-
3] where Lypunov exponents have been used to define the stability
criteria in systems with a multiplicative perturbation model, from
which adjustment proposals have been made considering dynam-
ics sustained over time. In the particular case of [4], stationary dis-
tributions have been used to define stability criteria, when the
perturbation model is additive, to then tune the parameters of a
controller that have been determined by traditional techniques
[5-7].

In [8] the calculation of the moments associated with Lya-
punov exponents is presented as a stability criterion. It is
shown and verified that moment p=0 coincides with the
almost sure Lyapunov exponent. However, no strategy for
adjusting controller parameters is shown. In the present paper
a methodology, based on linear analysis, is described that
allows determining safety regions associated with the con-
trollers, defining optimum gains for every fixed perturbation
size. The methodology is applied to the three-dimensional oscil-
lator, the infinite machine-busbar and the three machines elec-
tric power system.

The paper is structured as follows: Section 2 gives the mathe-
matical foundations and models used to represent an electric
power system as a stochastic linear system. Section 3 presents
the results obtained for cases presented. Finally, Section 4 includes
the conclusions and future work.


http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijepes.2017.05.013&domain=pdf
http://dx.doi.org/10.1016/j.ijepes.2017.05.013
mailto:humberto.verdejo@usach.cl
http://dx.doi.org/10.1016/j.ijepes.2017.05.013
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes

16 H. Verdejo et al./Electrical Power and Energy Systems 93 (2017) 15-29

2. Mathematical foundations
2.1. Model of the system

A dynamic system can be described by a nonlinear differential
equation of the form y(t) = f(y(t), ¢(t, w), b) in R? that is subjected
to a perturbation sustained over time &(t, ). Let us assume that b
represents the parameter of a controller, which must be adjusted
to decrease the effect of the random perturbations self-sustained
in time.

To do the above, let us assume that an equivalent linear repre-
sentation around an equilibrium point y* of the system can be
obtained, which has the following form:

X(t) = A(E(t, ), b)x(t) in R (1)

where A(&(t,w)) is the Jacobian matrix of the nonlinear system
Ffy(t),&(t,w)) at the equilibrium point y*, and b € R? is a set of
parameters that represent the controller. We will denote by
@(t,x,») the trajectories of (1), obtained from an initial condition
@(0,x,0) =x € R

In relation to the perturbation, traditionally white noise or vari-
ations of this process have been considered as representations of

&(t, w), see [9]. In our case, let  be a process defined by the differ-
ential Eq. (2)

dn = Xo(m)dt +> Xi(n) odW; on M 2)
i1
where X, ..., X, correspond to the vector fields C* and “o” denotes

the Stratonovic type stochastic differential equation, which more
appropriate than Ito type to perform calculations.

Thus, the system perturbation ¢&; in (1) is modeled as a function
of the background noise #, in the form &, = f(#,), with fa C* func-
tion. For more details in relation to the noise model, see Ref. [8].

2.2. Lyapunov exponents and moments

The stability of system (1), by means of Lyapunov exponents
has been developed in [3]. Each Lyapunov exponent for a given tra-
jectory ¢(t,x, w), is obtained from

H(x, 0) = limsup - log | (t.x, @), 3)

tooe L

On the other hand, for p € R the Lyapunov exponent for the pth-
moment is determined as

g(p.x) = limsup - log Fl(t,x, )" (4)

tooe

For further details of the calculation of moments, se Ref. [8].

Let us now assume that we consider the dependence of a con-
troller’s parameters represented by b € RY. In that case the Lya-
punov exponent and the moments are determined from

A(x,m,b) = limsup% log |o(t,x, w,b)|, (5)
t—oo

g(p.x b) = limsup ¢ log g (t.x.,b)" 6)
t—oo

In relation to Eq. (5), Refs. [1,2] report results on how the Lyapunov
exponents can be used to adjust the controllers’ parameters in Elec-
tric Power Systems.

2.3. Stability indices based on the calculation of Moment Lyapunov
Exponents

With the purpose of presenting the stability indices, let us
rewrite the stochastic linear system of Eq. (1) in the following way:

X(t) = A (t,0),bx* (x e R:, & (t,w) e U CR™p >0  (7)

where p is a variable that amplifies or reduces the size of the per-
turbation and b € R is a set of parameters that represent the con-
troller. According to [3], the almost sure Stability Radius is
defined as

r=inf{p > 0,4(p) > 0} ®)

Keep in mind that /(p) represents the almost sure Lyapunov expo-
nent of system (7). It corresponds to the smallest perturbation size
that allows the linear system to remain stable.

On the other hand, considering (6) the pth-moment of the Sta-
bility Radius is defined as (see [8]):

r(p) =inf{p > 0,g°(p) >0} foreachpe R (9)

Eq. (9) indicates, for every moment, the smallest size of the pertur-
bation that allows the system to remain stable. In [8] it is shown
that (8) and (9) have the same value for p = 0.

From Eq. (9) and the existence of parameter b € RY, we define
the following set of Stability Radii:

r(b,p)={p > 0,b e R'| max{p > 0,g"(p,b) < 0}} (10)

Eq. (10) allows getting a surface of Stability Radii. For all the
possible combinations of (b, p) in (10), the system will be stable.
From the standpoint of the system’s control, according to the per-
turbation p that is specified, it will be possible to determine the
maximum value that the parameter of the considered controller
will have.

To get the set of elements indicated in (10), the g”(p,b) terms
are calculated from (11), as indicated in [8].

g(p.x.b) = lim 1 10g E[p(T. x.2.b)"
I T i P
3 log ﬁfo(I,b)( . (11)

where o represents the initial conditions, g is the number of realiza-
tions of the perturbation &(t, w),b are the controller’s parameters,
and p is the size of the perturbation.

If we consider that b € R, another indicator that will be useful
to analyze the system’s response consists of

Tmax(p) = {p > 0, max{g(b,p), Vb € R'}} (12)

From now on, Eq. (12) will be called the Absolute Stability
Radius. This indicator will make it possible to analyze the effect
of the perturbation on the Stability Radii.

In Ref. [3] are presented three numerical methods to compute
Lyapunov exponents. In this paper we have used Method I
described in [3].

2.4. Perturbation model used for power systems

An Electric Power System can be described by the following dif-
ferential algebraic equation system:

x=f(x.y) (13)
0= g(x7y)



Download English Version:

https://daneshyari.com/en/article/4945495

Download Persian Version:

https://daneshyari.com/article/4945495

Daneshyari.com


https://daneshyari.com/en/article/4945495
https://daneshyari.com/article/4945495
https://daneshyari.com

