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a  b  s  t  r  a  c  t

Differential  evolution  (DE)  is one  of  the  most  popular  paradigms  of  evolutionary  algorithms.  In  general,
DE  does  not  exploit  distribution  information  provided  by  the  population  and,  as  a  result,  its  search  per-
formance  is  limited.  In this  paper,  cumulative  population  distribution  information  of  DE has  been  utilized
to  establish  an  Eigen  coordinate  system  by  making  use of  covariance  matrix  adaptation.  The crossover
operator  of  DE implemented  in  the Eigen  coordinate  system  has  the capability  to identify  the  features  of
the fitness  landscape.  Furthermore,  we  propose  a cumulative  population  distribution  information  based
DE framework  called  CPI-DE.  In CPI-DE,  for  each  target  vector,  two  trial  vectors  are  generated  based  on
both the  original  coordinate  system  and  the  Eigen  coordinate  system.  Then,  the  target  vector  is com-
pared  with  these  two trial  vectors  and the  best  one  will  survive  into  the  next  generation.  CPI-DE  has
been  applied  to two  classic  versions  of DE  and  three  state-of-the-art  variants  of  DE  for  solving  two  sets of
benchmark  test  functions,  namely,  28  test  functions  with  30 and 50 dimensions  at  the  2013  IEEE Congress
on  Evolutionary  Computation,  and  30 test  functions  with  30 and  50 dimensions  at  the  2014  IEEE  Congress
on  Evolutionary  Computation.  The  experimental  results  suggest  that  CPI-DE  is  an effective  framework  to
enhance  the  performance  of DE.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Differential Evolution (DE), proposed by Storn and Price [1,2]
in 1995, is a very popular evolutionary algorithm (EA) paradigm.
During the past two decades, DE has attracted a lot of attention and
has been successfully applied to solve a variety of numerical and
real-world optimization problems [3–5].

The remarkable advantages of DE are its simple structure and
ease of implementation. In DE, each individual in the population
is called a target vector. DE contains three basic operators: muta-
tion, crossover and selection. During the evolution, DE generates a
trial vector for each target vector through the mutant and crossover
operators. Afterward, the trial vector competes with its target vec-
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tor for survival according to their fitness. DE also involves three
control parameters: the population size, the scaling factor, and the
crossover control parameter. The performance of DE is dependent
mainly on these three operators and three control parameters. In
order to further improve the performance of DE, a lot of DE variants
have been designed, such as JADE [6], jDE [7], SaDE [8], EPSDE [9],
CoDE [10], and so on.

DE is a population-based optimization algorithm; however,
population distribution information has not yet been widely uti-
lized in the DE community, which makes DE inefficient especially
when solving some optimization problems with complex charac-
teristics. Very recently, two attempts have been made along this
line [11,12]. However, the methods proposed in Refs. [11,12] only
utilize the distribution information from a single population of one
generation, and the cumulative distribution information of the pop-
ulation over the course of evolution has been ignored. Moreover,
these methods introduce some extra parameters. Therefore, new
insights into the usage of the population distribution information
in DE are quite necessary.
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In 2001, Hansen and Ostermeier [13] proposed the well-known
covariance matrix adaptation evolution strategy, called CMA-ES.
CMA-ES generates offspring by sampling a multivariate normal
distribution, which includes three main elements: mean vector of
the search distribution, covariance matrix, and step-size. Indeed,
covariance matrix reflects the population distribution information
to a certain degree [12]. In CMA-ES, the covariance matrix is self-
adaptively updated according to the information from the previous
and current generations.

In this paper, we make use of the cumulative distribution infor-
mation of the population to establish an Eigen coordinate system
in DE, by considering CMA  as an effective tool. Furthermore, we
suggest a cumulative population distribution information based
DE framework called CPI-DE. In CPI-DE, for each target vector, the
crossover operator of DE is implemented in both the original coor-
dinate system and the Eigen coordinate system and, as a result,
two trial vectors are generated. Subsequently, the target vector is
compared with these two trial vectors and the best one will enter
the next population. CPI-DE is applied to two classic DE versions as
well as three state-of-the-art DE variants. Extensive experiments
across two benchmark test sets from the 2013 IEEE Congress on
Evolutionary Computation (IEEE CEC2013) [14] and the 2014 IEEE
Congress on Evolutionary Computation (IEEE CEC2014) [15] have
been implemented to verify the effectiveness of CPI-DE.

The main contributions of this paper can be summarized as fol-
lows:

• Due to the fact that single population fails to contain enough
information to estimate the covariance matrix reliably, this paper
updates the covariance matrix in DE by an adaptation procedure,
which makes use of the cumulative distribution information of
the population.

• CPI-DE provides a simple yet efficient synergy of two  kinds of
crossover: the crossover in the Eigen coordinate system and the
crossover in the original coordinate system. The former aims at
identifying the properties of the fitness landscape and improving
the efficiency and effectiveness of DE by producing the offspring
toward the promising directions. In addition, the purpose of the
latter is to maintain the superiority of the original DE. Moreover,
no extra parameters are required in CPI-DE.

• Our experimental studies have shown that CPI-DE is capable of
enhancing the performance of several classic DE versions and
advanced DE variants.

The rest of this paper is organized as follows. Section 2 describes
the basic procedure of DE. Section 3 briefly reviews the recent
developments of DE in the last five years. The proposed CPI-DE
is presented in Section 4. The experimental results and the per-
formance comparison are given in Section 5. Finally, Section 6
concludes this paper.

2. Differential evolution (DE)

Similar to other EA paradigms, DE starts with a population of NP
individuals, i.e., P(g) = {�x(g)

i
= (x(g)

i,1 , ..., x(g)
i,D

), i = 1, ..., NP}, where g
is the generation number, D is the dimension of the decision space,
and NP is the population size. In P(g), each individual is also called
a target vector. At g = 0, the jth decision variable of the ith target
vector is initialized as follows:

x(0)
i,j

= Lj + rand(0, 1) ∗ (Uj − Lj), i = 1, ..., NP, j = 1, ..., D (1)

where rand(0,1) represents a uniformly distributed random num-
ber between 0 and 1, and Lj and Uj are the lower and upper bounds
of the jth decision variable, respectively.

After the initialization, DE repeatedly implements three basic
operators, i.e., mutation, crossover, and selection, to search for the
optimal solution of an optimization problem. Note that in DE, a
combination of the mutation operator and the crossover operator
is called a trial vector generation strategy.

2.1. Mutation operator

At each generation, a mutant vector is generated for each target
vector by the mutation operator. The following are four commonly
used mutation operators in the DE community:

• DE/rand/1

�v(g)
i

= �x(g)
r1 + F ∗ (�x(g)

r2 − �x(g)
r3 ) (2)

• DE/rand/2

�v(g)
i

= �x(g)
r1 + F ∗ (�x(g)

r2 − �x(g)
r3 ) + F ∗ (�x(g)

r4 − �x(g)
r5 ) (3)

• DE/current-to-best/1

�v(g)
i

= �x(g)
i

+ F ∗ (�x(g)
best

− �x(g)
i

) + F ∗ (�x(g)
r1 − �x(g)

r2 ) (4)

• DE/current-to-rand/1

�v(g)
i

= �x(g)
i

+ F ∗ (�x(g)
r1 − �x(g)

i
) + F ∗ (�x(g)

r2 − �x(g)
r3 ) (5)

In the above equations, the indices r1, r2, r3, r4, and r5 are distinct
integers randomly selected from [1,  ..., NP]  and are also different
from i, �x(g)

best
is the best target vector in the current population, F is

the scaling factor, and �v(g)
i

is the mutant vector.

2.2. Crossover operator

After mutation, the crossover operation is applied to each pair
of �x(g)

i
and �v(g)

i
to generate a trial vector �u(g)

i
= (u(g)

i,1, . . .,  u(g)
i,D

). The
binomial crossover can be expressed as follows:

u(g)
i,j

=
{

v(g)
i,j
, if rand(0, 1) ≤ CR or j = jrand

x(g)
i,j
, otherwise

, j = 1, . . ., D (6)

where jrand is a random integer between 1 and D, rand(0,1) is a
uniformly distributed random number between 0 and 1, and CR
is the crossover control parameter. The condition j = jrand makes
the trial vector different from the corresponding target vector by
at least one dimension.

2.3. Selection operator

The selection operator of DE adopts a one-to-one competition
between the target vector and its trial vector. For a minimization
problem, if the objective function value of the trial vector is less
than or equal to that of the target vector, then the trial vector will
survive into the next generation; otherwise, the target vector will
enter the next generation:

�x(g+1)
i

=
{

�u(g)
i
, if f (�u(g)

i
) ≤ f (�x(g)

i
)

�x(g)
i
, otherwise

(7)

where f(�) is the objective function.
It is evident that NP,  F, and CR are three main control parameters

of DE. The setting of NP is related to the dimension of the decision
space. In general, the higher the dimension of the decision space,
the larger the value of NP.  In addition, F is always chosen from the
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