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a b s t r a c t

This study proposes an algorithm based on adaptive local iterative filtering decomposition (ALIFD), which
is applicable for the feature extraction of a power oscillating signal in a power system. The ALIFD algo-
rithm uses the Fokker–Planck equation to construct the filter function as well as filter sifting to obtain
the intrinsic mode function (IMF) with stable features. This algorithm has a solid mathematical founda-
tion and can effectively avoid the mode-mixing problems in the empirical mode decomposition (EMD)
algorithm. In this study, the ALIFD algorithm is initially used to obtain the oscillation component.
Subsequently, Hilbert Transformation (HT) of each component is performed, and oscillation characteristic
parameters are extracted. Analysis results of the test signal, the simulation signal, and the measured data
verify the effectiveness of the proposed algorithm. Meanwhile, the comparative results of the EMD algo-
rithm prove that the proposed method is highly adaptive to extracting the characteristics of power oscil-
lation in a power system.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The extensive application of power electronic equipment grad-
ually strengthens the nonlinear characteristics of modern electrical
power systems [1–3]. Active power oscillation demonstrates non-
stationary characteristics after a power system is disturbed under
extreme conditions [4–6]. This phenomenon presents new chal-
lenges in extracting and analyzing the low-frequency oscillation
characteristics of power systems based on measured information.

The traditional modal analysis method calculates the low-
frequency oscillation characteristic parameters of a power system
by decomposing the characteristics of the state-space model
obtained from nearby operating points and then analyzing low-
frequency oscillation [7,8]. This method is sensitive to component
model precision and system scale, which results in its restricted
application in large-scale modern interconnected power systems
that consists of power electronic equipment and other nonlinear
elements. Therefore, relevant technologies that adopt phasor mea-
surement unit (PMU) measured data and nonlinear digital simula-
tion data as bases and those that use modern signal analysis
method and parameter identification method to obtain

low-frequency oscillation parameters have rapidly developed in
recent years.

The Prony algorithm, the matrix pencil algorithm, and the mul-
tidimensional Fourier algorithm are the earliest linear signal anal-
ysis methods used for the low-frequency oscillation of power
systems [9–12]. The application of these algorithms is based on
the premise that the power oscillating signal is stable and linear.
Determining the accuracy of the most representative Prony algo-
rithm is considerably affected by the noise of the measured data.
Although Prony algorithm has constantly improved, it still cannot
fulfill the requirements for the precise extraction of the mode
parameters of modern power systems. To eliminate the effect of
measured noise and the nonlinear characteristic of the signal on
the extraction of low-frequency oscillation parameters, Literature
[13] and Literature [14] proposed oscillation frequency and damp-
ing ratio identification techniques based on continuous Morlet
wavelet transform and digital Taylor–Fourier transformation.
However, these techniques require setting the number of modes
in a signal before calculation; hence, calculating oscillating signals
with strong nonlinear and non-stationary power characteristics is
difficult. Literature [15] and Literature [16] used the Kalman filter
algorithm and the maximum likelihood estimation algorithm to
measure statistical power spectral density and to obtain low-
frequency oscillation parameters, respectively. The system transfer
function should be predicted before using these methods for
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calculation; thus, it is difficult to obtain the system transfer func-
tion in actual power systems.

The Hilbert–Huang transform (HHT) is the most representative
nonlinear and non-stationary signal analysis method [17]. This
technique has been successfully applied in extracting low-
frequency oscillation parameters, with an ideal effect under nor-
mal circumstances [18,19]. The HHT low-frequency oscillation
parameter extraction algorithm initially uses empirical mode
decomposition (EMD) to decompose power oscillating signals into
a finite number of IMFs. Subsequently, it conducts Hilbert transfor-
mation (HT) of the IMF components and then obtains the low-
frequency oscillation parameters. The core of this algorithm is
EMD. However, the envelope calculation process of the EMD algo-
rithm is considerably affected by noise, which leads to serious
mode-mixing problems in the EMD decomposition results of the
noise signal. Although the EMDmethod the result is improved con-
stantly, the mode-mixing problems remain unsolved. Meanwhile,
the EMD algorithm lacks a mathematical basis.

In order to deal with the mode-mixing problems existing in
EMD algorithm in the decomposition of power oscillation signal,
this paper introduces adaptive local iterative filtering decomposi-
tion (ALIFD) and presents a new modal extraction approach based
on ALIFD. The iterative filter decomposition (IFD) algorithm uses
the filter function to replace the envelope calculation of the EMD
algorithm. This algorithm has a solid mathematical foundation
and can solve the mode-mixing problems in the EMD algorithm
to a certain extent. Literature [20] introduced the Fokker–Planck
equation to establish the filter function, proposed ALIFD, and
improved the adaptability to signal and noise of ALIFD.

The remainder of this paper is organized as follows. Section 2
briefly reviews the IMF and the sifting process. Section 3 intro-
duces core theory and the basic decomposition process of the
adaptive local iterative filtering algorithm. Section 4 presents the
oscillation parameter identification algorithm based on HT. The
proposed method is used to analyze the low-frequency oscillation
of the test signals, the digital simulation results, and the measured
signals in Section 5. Finally, Section 6 concludes the study.

2. IMF sifting process

The EMD algorithm provides a new method for nonlinear and
non-stationary signal analysis. Similarly, variational mode decom-
position [21], empirical wavelet transform [22], and syn-
chrosqueezed wavelet transform algorithms [23] have been
consecutively proposed. These algorithms aim to obtain the IMF
step by step, with each mode satisfying the following conditions:
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where y(t) is a given nonlinear and non-stationary signal, v is the
fluctuant operator capturing the fluctuation part, j is set as the
moving operator which is a moving average of the signal y(t), and
vðyðtÞÞ ¼ yðtÞ � jðyðtÞÞ.

Furthermore, the IMF can be obtained through the following
selection process.

Step 1. The moving operator j(y(t)) of a given non-stationary
and nonlinear signal y(t) is calculated.
Step 2. The fluctuant operator v is obtained by subtracting the
moving operator from the original signal y(t) as follows:

vðyðtÞÞ ¼ yðtÞ � jðyðtÞÞ: ð2Þ

Step 3. Whether the wave operator v satisfies the IMF condi-
tions of Formula (1) is determined. If it does not satisfy the
IMF conditions, then Steps 1 and 2 are repeated for the fluctuant
operator v; if it satisfies the IMF conditions, then the IMF com-
ponent ci(t) = v can be obtained.
Step 4. m components are subtracted from the signal y(t) to
obtain the residual component r(t) as follows:

rðtÞ ¼ yðtÞ �
Xm
i¼1

ciðtÞ; ð3Þ

where r(t) is set as the original signal to repeat Steps 1–3 until the
residual component r(t) becomes the trend component.

After finite decomposition, the IMF components with different
frequencies in the original signal can be obtained. Then, the origi-
nal signal can be described as the sum of N IMF components and
the remaining components as follows:

yðtÞ ¼
XN
i¼1

ciðtÞ þ rðtÞ: ð4Þ

The main difference in various decomposition algorithms lies in
the different methods used to calculate the sliding factor j. In
EMD, the moving operator is the mean value of the upper and
lower envelope lines of the signal, i.e.,

jðyðtÞÞ ¼ 1
2
ðEuðxÞ þ ElðxÞÞ; ð5Þ

where Eu(x) and El(x) are the upper and lower envelope lines of the
signal y(t), respectively.

3. Adaptive local iterative filter decomposition algorithm

3.1. Iterative filter decomposition (IFD)

The EMD algorithm adopts the cubic spline interpolation algo-
rithm to generate envelope lines, and then uses Formula (5) to cal-
culate the sliding operator. Subsequently, it inhibits the high-
frequency components of the signal to certain extent, and results
in the situation in which signal decomposition is significantly
affected by noise. The results of this algorithm are incomplete. L.
Lin and Y. Wang et al. constructed a low-pass filter function to
replace the envelope-based sliding operator of EMD and proposed
an IFD algorithm [24].

In the iterative filtering algorithm, the moving operator is calcu-
lated through the convolution of a given signal y(t) and a filter
function x(t); that is,

jðyðtÞÞ ¼ R lðyÞ
�lðyÞ yðt þ sÞxðs; tÞdsR lðyÞ

�lðyÞxðs; tÞds ¼ 1
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where l(y) is the filter length, which can be obtained using Formula
(7) as follows:

lðyÞ ¼ 2
Ss
m

� �
; ð7Þ

where s is the set parameter, which is between 1.6 and 2.0; m is the
number of extreme points in the decomposed signal; and S is the
signal length.

Performing actual calculation when n in Formula (1)
approaches infinity is difficult because of the limited calculation
time. When the actual situation is considered, Formula (8) can be
used to describe the characteristics of IMF as follows:

jðemin þ emax Þ � e0j 6 1
EuðtÞþElðtÞ

2 ¼ 0

(
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