
New smart fault locator in compensated line with UPFC

Zahra Moravej a,⇑, Mohammad Pazoki a, Mojtaba Khederzadeh b

a Electrical and Computer Engineering Faculty, Semnan University, Semnan, Iran
b Electrical Engineering Department, Shahid Beheshti University, A.C., Tehran, Iran

a r t i c l e i n f o

Article history:
Received 1 February 2017
Received in revised form 17 March 2017
Accepted 3 May 2017

Keywords:
Smart fault locator
Compensated line
UPFC
HST
SVMs

a b s t r a c t

In this paper, a new smart fault locator in a compensated transmission line with a Unified Power Flow
Controller (UPFC) is proposed. Three types of features are extracted from the captured fault signals at
one-end of the compensated line by using a time-frequency signal processing tool known as the
Hyperbolic S-Transform (HST). The HST, with an asymmetrical window, is an improved version of the
S-transform. Then, the regression model of the Support Vector Machines (SVMs) with a non-linear kernel
function is applied for the fault location estimation. The proposed smart fault locator gives accurate esti-
mation results by involving hidden statistical features which comprise a new type of time-frequency fea-
tures. The evaluation of the features and the estimation error obtained under different conditions confirm
the efficacy of the proposed smart fault locator.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Transmission lines often experience electrical faults in a power
system. If the fault point can be located with high accuracy, the
system restoration will be expedited and, hence, the system oper-
ation will be improved. As the Flexible AC Transmission Systems
(FACTS) advances, the compensated transmission lines are faced
with challenges for the fault analysis [1,2].

The Unified Power Flow Controller (UPFC), a versatile compen-
sator with three control variables (active, reactive power, and volt-
age), can overcome the power transfer limitations. A UPFC with
Static Synchronous Series Compensator (SSSC) and STATic syn-
chronous COMpensator (STATCOM) connected to a common dc-
link can independently and simultaneously control the power flow
in a line, leading to symmetrical three-phase compensations dur-
ing asymmetrical faults. Accordingly, it is imperative to reconsider
the transmission line protection and fault locators [2–5].

From the viewpoint of signal availability, the fault locators uti-
lize the signal(s) from the one- or two-end of the protected line.
The most significant advantage of the one-end-based methods is
that communication channels and remote data are not required.
Therefore, the implementation procedure of these methods is
easier than the two-end-based methods. Furthermore, the integra-
tion of the one-end methods into the numerical relays or the dig-
ital fault recorders is possible. The one-end fault locators yield

acceptable fault location estimation but the estimation is not as
accurate as the one yielded by the two-end fault locators.

There are various methods for addressing the fault location
problem based on the one-end captured signals: impedance- [6],
travelling wave- [7], high frequency components- [1], and artificial
intelligence-based [8–15] methods. In the next section, these
methods will be discussed in more details. Some methods locate
the faults in the UPFC-embedded line by using the two-end cap-
tured signals [3,4] but there is no study of one-end-based fault
location in the compensated line with the UPFC. When the UPFC
is absent in a fault loop, the fault location algorithm observes the
fault loop as an un-compensated case. Therefore, some fault loca-
tion algorithms from the category of artificial intelligence methods
in the un-compensated line are reviewed. Extracting features from
the one-end captured signal(s) and feeding them into the estimator
model is the common procedure used by these algorithms. The fea-
tures extracted by the Discrete Fourier Transform (DFT) tool con-
tain different frequency components [8,9,11]. The distribution of
each frequency component in the time domain can improve the
performance of estimators. Therefore, the S-Transform (ST), as a
time-frequency tool, is applied for feature extraction purposes in
[12].

The smart fault locator performance and its generalization
capability are highly depended on the efficacy of the extracted fea-
tures. In this paper, using the Hyperbolic S-Transform (HST) as an
improved version of the ST with an asymmetrical window, an
accurate smart fault locator based on captured signals at one-end
of the UPFC-embedded line is proposed. Three types of features
including impedance, time-frequency, and hidden statistical fea-
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tures are fed into the Support Vector Machines (SVMs) with a non-
linear kernel function. To evaluate the extracted feature vector, dif-
ferent fault conditions are analyzed. Moreover, the accuracy of the
proposed smart fault locator is examined under various scenarios.

2. Statement of the problem

Today, the FACTS technology is increasingly applying in the
power systems to provide an affordable, reliable, and sustainable
increase in the capacity of networks. On the other hand, fault loca-
tion methods in compensated lines, in comparison to un-
compensated lines, are faced with more challenges. The conven-
tional fault location methods in the compensated line with the
UPFC have additional uncertain parameters related to the series
and shunt parts of the UPFC [28]. Despite the fact that the one-
end-based methods are more preferred for locating faults in the
UPFC-embedded line, more research attention is paid to the two-
end data-based methods but these methods suffer from the limita-
tion of requiring reliable communication channels [3,4]. The one-
end-based fault locators can be classified according to their tech-
niques as follows:

– The methods based on the travelling wave require a high sam-
pling rate. Moreover, in a compensated line, when a compen-
sator device presents in the fault loop, discrimination between
the reflected waves from the fault point and the remote bus is
a challenging issue in the fault location [1,7].

– The methods based on the generated high-frequency compo-
nents in the signals during faults are not widely used due to
the bandwidth limitation of the transducers [1]. However, the
high-frequency information of fault signals is more accessible
to the fault locators as the technology of the transducers is
advanced [16,17].

– The one-end impedance-based methods are commonly used by
the fault locators in a transmission network. Different one-end
methods such as simple reactance, Takagi, modified Takagi,
Erikson, and Novosel have been proposed [6,19]. Some assump-
tions need to be met to calculate the fault location and, hence,
these methods suffer from estimation errors. In the UPFC-
embedded transmission line, due to series injected voltage by
series part of the UPFC and shunt injected current by shunt part
of the UPFC, the impedance-based methods fail to calculate the
fault location.

– The artificial intelligent-based methods employ the useful fea-
tures of fault signals in the relaying point to locate the faults
accurately. When there is no direct relationship between the
input data and the target value, these methods can be useful
[8–15].

In this paper, a smart fault locator is proposed by using some
advantages of the aforementioned methods and new extracted
time-frequency features.

3. Pattern-recognition tools

3.1. Hyperbolic S-transform

A short time Fourier transform with a Gaussian window is
introduced as an S-Transform. The ST is a multi-resolution time-
frequency technique which is given as follows:

Sðs; f Þ ¼
Z þ1

�1
hðtÞwðs� tÞ expð�2pjftÞdt ð1Þ

where t is time, s is an index of the window position control on the
time axis, f is a frequency symbol, S is the ST of input signal hðtÞ as a

continues function of t, j is a unit imaginary number, and wðtÞ is a
Gaussian symmetrical window. The ST applies a narrower Gaussian
window to provide appropriate time resolution. On the other hand,
the narrower window gives good time resolution but poor fre-
quency resolution. To overcome this problem, the ‘‘hyperbolic” win-
dow, as an asymmetrical window with a sharper taper in the
forward direction and a compensating slower tapper in the back-
ward direction, is used. More details regarding the HST are
described in [20].

Usability of HST: The HST with an asymmetrical adjustable win-
dow width provides a multi-resolution of non-stationary signals
such as fault signals. For a signal of length N, the HST generates a
N=2� N matrix contained complex numbers. The rows and col-
umns of a HST-Matrix (HSM) represent time and frequency
domains respectively. The HSM provides the time-frequency infor-
mation on the signal impressively.

3.2. Support vector machines

The SVMs, as powerful machine learning models, perform the
regression task by the same principles used in the classification
case. The SVM regression uses e� insensitives function to fit a
function which approximates the relation inherited between the
data set points and associated targets. The function estimates the
output for a new input data point. In a non-linear problem, the
training patterns are mapped into a feature space by a kernel func-
tion and then, the standard SVM regression model will be applied
to solve the problem. More details are described in [21].

Why SVM? First, compared to Neural Networks (NNs), the SVMs
are free of local minima. Moreover, the tuning parameters of SVMs
are less than ones in NNs. Second, the SVMs do not need expert
knowledge for the regression problems, in contrast to the fuzzy-
based methods which need prior expert knowledge. Finally, the
selection of Radial Basis Function (RBF) kernel makes an appropri-
ate SVM model for a non-linear problem. Furthermore, the combi-
nation of the margin parameter of SVMs (C) and the RBF parameter
(c) achieves a good generalization capability in complex regression
problems such as the fault location estimation.

4. Proposed smart fault locator

The structure of the proposed smart fault locator is shown in
Fig. 1. When a fault occurs at the transmission line before the UPFC
installation point, the UPFC device is absent in the fault loop.
Therefore, the UPFC controllers have no effect on the voltage and
current signals at the relaying point. On the other hand, when a
fault occurs at the transmission line after the UPFC installation
point, the UPFC device is in the fault loop. A symmetrical or an
asymmetrical fault, which is occurred after the UPFC installation
point, leads the UPFC to a symmetrical compensation due to
three-phase nature of the controllers. Therefore, in this case, the
sampled signals at the relaying point differ from the sampled sig-
nals corresponding to the faults before the UPFC installation point.
From the viewpoint of the installation location of the UPFC, two
sections are possible for the fault points: ‘‘before” and ‘‘after” the
UPFC installation point. In this paper, accordingly, two parallel sub-
routines are needed to locate the faults before and after the UPFC
installation point. SVM-1, 2, 3, and 4 are trained for single-phase-
to-ground (LG), phase-to-phase (LL), phase-to-phase-to-ground
(LLG), and three-phase/three-phase-to-ground (LLL/LLLG) faults
before the UPFC installation point, respectively. SVM-5, 6, 7, and
8 are trained for the faults after the UPFC installation point similar
to SVM-1, 2, 3, and 4. Furthermore, it is assumed that the fault
inception time, fault type, and fault loop status (loop including
UPFC or not) are known by auxiliary functions proposed in [2].
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