
Applied Soft Computing 48 (2016) 419–430

Contents lists available at ScienceDirect

Applied Soft Computing

j ourna l h o mepage: www.elsev ier .com/ locate /asoc

Adaptive scheduling on unrelated machines with genetic
programming

Marko Ðurasević ∗, Domagoj Jakobović, Karlo Knežević
University of Zagreb, Faculty of Electrical Engineering and Computing, Croatia

a r t i c l e i n f o

Article history:
Received 1 May 2015
Received in revised form 1 April 2016
Accepted 13 July 2016
Available online 20 July 2016

Keywords:
Scheduling on unrelated machines
Genetic programming
Priority scheduling

a b s t r a c t

This paper investigates the use of genetic programming in automatized synthesis of heuristics for the
parallel unrelated machines environment with arbitrary performance criteria. The proposed scheduling
heuristic consists of a manually defined meta-algorithm which uses a priority function evolved separately
with genetic programming. In this paper, several different genetic programming methods for evolving
priority functions, like dimensionally aware genetic programming, genetic programming with iterative
dispatching rules and gene expression programming, have been tried out and described. The performance
of the suggested approach is compared to existing scheduling heuristics and it is shown that it mostly
outperforms them. The described approach could prove useful when used for optimizing scheduling
criteria for which no adequate scheduling heuristic exists.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Scheduling can be defined as a decision-making process con-
cerned with the allocation of scarce resources to tasks over a given
time period in order to optimize one or more objectives [1]. Unfor-
tunately, most of the important scheduling objectives represent
NP-hard problems. As a consequence, no efficient algorithms are
available for obtaining the optimal solution for a given objective.
Therefore, solutions are usually obtained by using heuristic algo-
rithms. In this context, we divide the algorithms in two groups:
the first group consists of metaheuristics which search the space of
solutions (schedules) to find the best one; the second group con-
sists of problem-specific heuristics that construct the solution using
some features of the problem [2].

Since most scheduling problems are combinatorial by nature,
search-based metaheuristic methods (such as genetic algorithms,
ant colony optimization, particle swarm optimization, etc.) can
be used to search the space of solutions. The solutions obtained
by such methods are often of a good quality, mostly better than
the solutions obtained by constructive heuristics. Unfortunately,
these methods require a substantial computational time in order to
obtain solutions of acceptable quality (since they search the entire
solution space). Another disadvantage of these methods is that they

∗ Corresponding author.
E-mail addresses: marko.durasevic@fer.hr (M. Ðurasević),

domagoj.jakobovic@fer.hr (D. Jakobović), karlo.knezevic@fer.hr (K. Knežević).

are generally not applicable in dynamic conditions, in which a con-
stant adaptation to the changing conditions may be needed (e.g.
unplanned arrival of new jobs, machine outages, etc).

Constructive scheduling heuristics, on the other hand, do not
search the space of all possible solutions, but instead directly
build the solution (schedule). Because of that, these heuristics can
quickly react to changes in the environment, making them applica-
ble in dynamic conditions. The advantage of these heuristics over
the search-based methods is that their computational complexity
is almost negligible. However, constructive scheduling heuristics
also cope with a certain number of problems. For instance, it is
often hard to select the optimal heuristic for the given criteria and
problem instance. This was shown in [3] where evolutionary algo-
rithms were used in order to create problem instances for the job
shop scheduling problem, on which certain constructive sched-
uling heuristics made poor choices, which in the end resulted in
schedules of low quality.

It should also be noted that such heuristics are not designed to
optimize arbitrary criteria which could be defined by the user (it
would be necessary to design a new heuristic to handle such a case).
When all this is considered, it can be concluded that selecting an
appropriate scheduling policy is not easy and that a heuristic for
optimizing a given criteria might not even exist.

Genetic programming (GP), although rarely used for solving
scheduling problems, is very suitable for searching the space of
algorithms which, in turn, can provide solutions to scheduling
problems. Recently, GP has been used to evolve scheduling poli-
cies for a wide variety of environments (single machine scheduling

http://dx.doi.org/10.1016/j.asoc.2016.07.025
1568-4946/© 2016 Elsevier B.V. All rights reserved.

dx.doi.org/10.1016/j.asoc.2016.07.025
http://www.sciencedirect.com/science/journal/15684946
www.elsevier.com/locate/asoc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.asoc.2016.07.025&domain=pdf
mailto:marko.durasevic@fer.hr
mailto:domagoj.jakobovic@fer.hr
mailto:karlo.knezevic@fer.hr
dx.doi.org/10.1016/j.asoc.2016.07.025

420 M. Ðurasević et al. / Applied Soft Computing 48 (2016) 419–430

[4–6], job shop scheduling [7–13], parallel proportional machine
scheduling [14], airplane scheduling in air traffic control [15,16],
scheduling in semiconductor manufacturing [17]). In addition, a
recent survey about evolving dispatching rules with GP has been
conducted by Branke et al. in [18]. This method has proven to be
very successful, because not only does it allow to create scheduling
policies for arbitrary criteria, but it also provides solutions which
are on par with solutions obtained by heuristic methods.

In this paper we describe the approach of using GP for creating
scheduling policies for the unrelated machines environment. We
also describe several variants for this approach, used in order to
obtain better results. Some of these modifications have been used
in other machine environments, but to our knowledge, they have
not yet been applied in the unrelated machines scheduling. We
compare all of these variants against each other and additionally
compare them to several existing approaches for creating sched-
ules in order to assess the quality of the achieved solutions. In
that regard this paper can be viewed as a continuation in compar-
ing different optimization approaches, which has previously been
conducted by Nguyen et al. [19] and Branke et al. [20].

The remainder of the paper is organized as follows: in Section 2
the definition of scheduling in the unrelated machines environment
is given. Section 3 gives a short overview of genetic programming
and its usage in the creation of scheduling policies. In Section 4
various GP optimizations are described. Section 5 describes the
benchmark set and the results for all the algorithms. Section 6 deliv-
ers a short discussion on the results. Finally, Section 7 gives a short
conclusion.

2. The unrelated machines environment

In the unrelated machines environment, a number of n jobs com-
pete in order to be processed on one of the m machines. All jobs have
a processing time pij, which determines the time which is needed
for the job with the index j to be processed on the machine with the
index i, as well as a release time rj (ready time) which determines
when the job becomes available for scheduling. Jobs may also have
additional properties, like a due date dj and a weight wj (which
determines the importance of the job). In this paper we considered
the more complex problem variant which includes relative impor-
tance of a job, given by its weight. Solving for this variant can also
solve the simpler problem with unweighted jobs.

2.1. Scheduling criteria

The most common scheduling criteria which are used for this
environment include tardiness, number of tardy jobs, flow-time
and makespan. First, let us define those criteria for a single job.
Let Cj denote the finishing time of the job j. We can then define
tardiness (the amount of time that a job was late) of job j as:

Tj = max{Cj − dj, 0}. (1)

Similarly, flow-time, the amount of time a job spends in the
system, can be defined as

Fj = Cj − rj. (2)

We will also define an additional measure which determines if
a job is tardy or not

Uj =
{

1 : Tj > 0

0 : Tj = 0
. (3)

Using criteria for individual jobs, criteria for the entire schedule
are defined. The makespan is defined as the maximum finishing
time of all the jobs in the set

Cmax = max{Cj}. (4)

The other criteria are often defined as weighted sums: weighted
tardiness

Tw =
∑

j

wTj, (5)

weighted flow-time

Fw =
∑

j

wFj, (6)

and weighted number of tardy jobs

Uw =
∑

j

wUj. (7)

2.2. Scheduling conditions

Based on the availability of the job parameters, scheduling can
be performed in different conditions. If all the parameters are
known before the jobs are ready, then the schedule can be pro-
duced before the system starts its execution. This type of scheduling
is called off-line or static scheduling. Search-based methods are
most often used to create schedules for this type of scheduling
conditions.

On the other hand, if no information about the jobs is avail-
able until the job has arrived into the system and no information
is available about future jobs either, then such a scheduling pro-
cess is called on-line scheduling. Heuristic scheduling methods, and
the GP-based scheduler described in the next section, are almost
always used in this kind of scheduling conditions. In addition, both
of these approaches can be used for off-line scheduling as well, but
in that case they are generally less efficient than the search-based
methods.

3. Scheduling in the unrelated machines environment
using genetic programming

3.1. Genetic programming

Genetic programming (GP) [21] is an evolutionary algorithm
which is used to discover functions or programs which provide a
solution to a given problem. In the algorithm, these solutions are
represented in the form of a tree. The tree consists of two types
of nodes, namely functional nodes (which represent certain arith-
metic, boolean or other kind of functions) and terminal nodes which
represent input variables and constants.

The idea behind this approach is to simulate the process of evo-
lution. At the beginning of the algorithm, a random number of
potential solutions is generated. Each solution receives an estima-
tion of how “good” the solution is, which is measured on some
predefined test cases. This estimation is called the fitness of the
solution. The algorithm simulates natural selection such that the
“better” individuals (solutions) have a higher probability of sur-
vival, while on the other hand, “worse” individuals have a smaller
probability to survive. The individuals which survived the selection
participate in crossover, which is a genetic operator that combines
two individuals to form a new, hopefully better, individual. After
the new individual is created, another operator called mutation is
applied to the newly created individual. This operator changes, with
a certain probability, some elements of the individual in order to
introduce new elements into the solutions. This cycle of selection,

Download English Version:

https://daneshyari.com/en/article/494560

Download Persian Version:

https://daneshyari.com/article/494560

Daneshyari.com

https://daneshyari.com/en/article/494560
https://daneshyari.com/article/494560
https://daneshyari.com

