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a b s t r a c t

It is estimated that Europe alone will need to add over 250,000 km of transmission capacity by 2050, if it
is to meet renewable energy production goals while maintaining security of supply. Estimating the cost of
new transmission infrastructure is difficult, but it is crucial to predict these costs as accurately as possi-
ble, given their importance to the energy transition. Transmission capacity expansion plans are often
founded on optimistic projections of expansion costs. We present probabilistic predictive models of
the cost of submarine power cables, which can be used by policymakers, industry, and academia to better
approximate the true cost of transmission expansion plans. The models are both generalizable and well-
specified for a variety of submarine applications, across a variety of regions. The best performing statis-
tical learning model has slightly more predictive power than a simpler, linear econometric model. The
specific decision context will determine whether the extra data gathering effort for the statistical learning
model is worth the additional precision. A case study illustrates that incorporating the uncertainty asso-
ciated with the cost prediction to calculate risk metrics - value-at-risk and conditional-value-at-risk -
provides useful information to the decision-maker about cost variability and extremes.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

The first submarine power cable used for electricity transmis-
sion was commissioned in 1954, connecting the electric grid of
Gotland Island to Sweden’s mainland grid. The cable was rated at
20 megawatts (MW), traversing a submarine route length of
98 kilometers (km) [1]. On the opposite end of the spectrum, the
proposed EuroAsia Interconnector would connect the electricity
grid of Israel to Greece via Cyprus, with a total rated transmission
capacity of 2000 MW, traversing a submarine route length of over
1500 km, at a maximum depth of over 2700 m. The most ambitious
to date, this submarine cable project has an estimated cost of 1.5
billion euros [2].

Over the past fifty years, submarine power cables have been
employed in diverse applications, including: crossing bays, lakes
or rivers; providing supply to islands from mainland grids; sharing
supply between islands; interconnecting national grids; providing
supply to offshore oil and gas rigs; and, most recently, for offshore
wind power connection [1].

Both offshore wind power and national-level grid interconnec-
tions - in the seas of Northern Europe and the Mediterranean -

figure heavily in the European Union’s (EU) plans for achieving
ambitious renewable energy goals. In Germany, the North and Bal-
tic seas alone are seeing the construction and operation of 33 off-
shore wind farms, totaling 13.5 Gigawatts (GW) of capacity [3,4].
The push for renewable production is not limited to Europe: and
so, worldwide, the submarine power cable industry is expected
to grow by 45% in the next decade [5].

1.1. Cost estimation techniques

When project cost estimation is conducted in the planning
phase of large infrastructure projects, it is usually done through
Unit Cost Estimation (UCE) [6]. This method requires a cost estimate
for each unit or process being built, as well as knowledge of the
unit’s depreciation rate, salvage value, expected lifetime, and
expected repair and maintenance costs. An informative example
of this method of cost estimation is illustrated in [7]. As in most
engineering economic models, these cost estimates are based on
the expected values of the costs of many individual components.
This is problematic because it does not account for the uncertainty
surrounding each individual input cost, or how the costs relate to
each other; positively correlated costs compound uncertainty,
but negatively correlated costs can reduce uncertainty. Thus, using
expected value inputs does not guarantee an expected value out-
put of a UCE model.
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Industry has attempted to minimize the uncertainty in input
values by annually updating unit cost reference books, such as
the RS Means [8]. These volumes catalog the material, labor (num-
ber of crew needed, daily output expected, labor-hours, etc.), and
equipment needs for specific sub-projects. The project engineering
team must determine what sub-project tasks will make up the
entire project cost (e.g. for large electrical infrastructure projects,
such sub-projects could include generation equipment installation,
inverter installation, transmission line installation, etc.). Despite
the great detail of such cost reference books, these reference vol-
umes are of limited use, as they are proprietary, region-specific
point-estimates that are usually developed only for specific
deployment options. For example, while RS Means publishes a
yearly review of electrical cost data with estimates for under-
ground and overhead transmission line construction work, esti-
mates for the costs associated with submarine power cable
projects are not included [8].

Because detailed, and presumably more accurate data, is too
often proprietary, researchers have recently studied how to apply
statistical methods to infrastructure project cost estimation. With
more sophisticated mathematical models, a reasonably accurate
cost estimate could be made with less detailed input data.

1.2. Early cost prediction for infrastructure planning

Infrastructure planning is a major undertaking, with just the
planning phase typically spanning years. To determine the poten-
tial feasibility of an infrastructure project, an estimate of the pro-
ject cost is needed fairly early in the planning stage, when
specific project details are not fully known. However, it is in the
early planning stages that management decides whether or not
to proceed with a project. Thus, it is imperative to have the cost
estimated as early and as accurately as possible.

To this end, several types of infrastructure projects have utilized
methods in statistical learning for early cost prediction. These
methods include linear regressions, classification trees and artifi-
cial neural networks, applied to various infrastructure projects
such as metro network planning [9], bridge construction [10],
highway projects [11], and road reconstruction [12].

The statistical methods used in these studies have been applied
to either small data sets of projects (n = 12–18) [9,11], or to data
sets within a specific region [10,12,13]. The results of model-fit
from such data sets can seem excellent (with R2 values of greater
than 0.9), but are usually too optimistic, as such a model is not gen-
eralizable to many other cases.

In this paper, we develop probabilistic models to support early
cost prediction for submarine power cable projects. The final mod-
els presented in Section 3 are based on a global database of 61 sub-
marine cable projects. This makes the models both generalizable
and well-specified for a variety of applications (i.e. submarine
power cable projects for island supply, offshore wind farm connec-
tion, and grid interconnection, inter alia), across a variety of
regions.

1.3. Paper structure

The structure of the paper is as follows. Section 2 describes the
global submarine power cable project database. Section 3 elabo-
rates on the statistical learning methods applied to the data set.
Section 4 details the predictive accuracy of the final models. Sec-
tion 5 applies the final models to a case study on submarine power
cable replacement for Vancouver Island, Canada.

2. Data

The data is based on a privately maintained submarine power
cable project database [14]. At the time of this study, the database
contained a record of 296 projects, with each record comprised of
various project features. Data collected included project attributes
like the power (MW) and voltage (kV) of the submarine cable,
manufacturer, armoring material, and insulation type. Of the 36
project attributes sought, 22 were reported with sufficient fre-
quency to enable collection for a large number of projects. The con-
tract cost of the submarine power cable project was also collected
for 106 projects.

The data was verified through a significant effort of cross-
referencing sources of project details: from company press releases
to industry technical reports and presentations. When not reported
in the company press release, the maximum depth of the cable
route was obtained from bathymetry maps. After the verification
of the 296 project records, it was determined that the data for only
61 projects could be reliably substantiated. To reduce the variabil-
ity in the cost data, only costs reported in press releases fromman-
ufacturers were used (e.g. [15]).

2.1. Project attributes

There are many features of a project that can affect its cost. For
submarine power cable projects, materials costs, such as the cost of
copper or aluminum used in the conductor, is thought to be a large
contributor to project cost. Thus, project attributes that represent
material cost were collected such as, the number of conductor
cores in each cable (one core for direct current (DC) and three cores
for alternating current (AC)); the cross-sectional area of the con-
ductor in square-millimeters; the type of current (AC or DC); the
number of cables; the length of the submarine route of the cable
(s); the type of conductor (copper, Cu, or aluminum, Al); the voltage
(kV) and power (MW) of the cable; and the market price of copper.

Project attributes aimed at approximating the equipment cost
of a submarine power cable project included: the cable laying ves-
sel used; the maximum depth along the submarine route; and the
application for which the cable will be used (island supply; grid
interconnection; offshore wind power; bay/lake/river crossing; or
oil and gas offshore platform power supply).

Market conditions for labor costs were approximated by the fol-
lowing project attributes: country of project; manufacturer of the
submarine cable; cable customer; contract year; and estimated
project length in years.

2.2. Data transformation and variable selection

Finally, the contract cost for each submarine power cable pro-
ject was converted to real values in 2012 USD [16]. The natural log-
arithm of the cost is used as the dependent variable in all models
presented in Section 3, due to its normality. Modeling the cost data
as a Gamma distribution did not improve predictive performance.

As described in Section 3, many different statistical models
were tested with different combinations of the 21 aforementioned
project attributes. Table 1 details the project attributes, the inclu-
sion of which resulted in the best prediction of project cost. The
most useful attributes from this perspective were eight continuous
variables and three categorical variables.

3. Model development and selection

The primary research question of this work is to determine the
best statistical model for submarine power cable cost prediction.
Industry insight on predictors was obtained through conversations
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