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a b s t r a c t

Electric vehicles (EV) are treated as a breakthrough technology in the automotive market. The novelty of
this technology also implicates that the incidence of these vehicles worldwide is still low. An important
issue regarding EVs is the existence of proper charging infrastructure as waiting at charging stations due
to an inadequate number of chargers can discourage EV owners. However, as the number of EVs and
charging stations are low at present, real world experience is not available, so computer simulations
are required for the planning of such charging stations.
We developed a stochastic model in this paper that includes driving and charging behaviour of EV own-

ers in Japan. The model is based on Monte Carlo methods and was implemented in MATLAB. We con-
ducted simulations with this model to find out whether the existing infrastructure is adequate for the
charging of a large number of EVs. The results indicate that Japan is well prepared for an increase in
plug-in vehicles (PHEVs) in the near future: currently the country has 6 fast chargers for 100 electric cars
and for this ratio - on average -, waiting probability at DC (direct current) fast chargers ranges lower than
5%, which is an acceptable value for EV owners. If, however, the ratio decreases, waiting probability
increases exponentially.

� 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Japan has one of the most progressive industries in terms of
alternative drive vehicles [1]. The Electric Vehicle Index published
by McKinsey every half year continuously ranks Japan top. Further-
more, Japanese OEMs (Original Equipment Manufacturer) hold the
most sold EV (Nissan Leaf), PHEV (Mitsubishi Outlander), hybrid
vehicle (Toyota Prius) and fuel cell vehicle (Toyota Mirai) [2].

In the current commercial phase, Japan was the country of the
first launch of a commercial EV: Mitsubishi launched its ’i-MieV’
in 2009. Since that launch, around 120,000 PHEVs (PHEV and EV)
have been sold in Japan and around 80% of them are equipped with
fast charging abilities [5]. Next to a strong industry, Japan has con-
tinuously invested in charging infrastructure for pure EVs and
PHEVs. The country-wide fast charging standard CHAdeMO is also
used in most fast charging stations throughout the world (around
6000 CHAdeMO fast chargers have been installed in Japan, 2000 in
Europe and 1500 in the USA [3,4]). This means a ratio of 5.9 fast
chargers per 100 fast charging compatible vehicles in Japan [4].

The literature dealing with charging station and individual
charger location planning is vast, stochastic models are widely

used for this purpose. A similar approach to our planning proce-
dure can be found in [7], where the authors attempt to address
both the system-level scheduling problem and the individual con-
trol problem, requiring only distributed information about EVs and
their charging at service stations. They utilize the M/M/c queuing
process. Authors of [8] describe a tool based on Monte Carlo tech-
niques to identify load scenarios associated with electric car charg-
ing. Our paper uses a similar procedure, but with a more accurate
stochastic algorithm. The authors of [9] propose a model for PHEV
utilization to determine charging load profiles based on driving
patterns due to the type of trip and corresponding charging need,
also based on Markov chains. [10] presents a methodology to esti-
mate grid availability for cars with the use of a non-homogeneous
semi-Markov process. In [11] the authors propose a model for gen-
erating PHEV home charging patterns by combining PHEV usage
with other residential consumption. PHEV usage is modelled with
Markov chains. Our paper complements these models with
detailed vehicle motion simulations, making it possible to monitor
EVs’ SOC (State of Charge) development during motion and charg-
ing. It also takes into consideration the nonlinear charging charac-
teristics of batteries under fast charging and the diversity of car
usage.

The paper continues as follows: In Section 2, we describe the
modelling assumptions, the initial data and the distribution fitting
procedures: we fit distribution functions to datasets describing
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vehicle travel time and distance, energy consumption and initial
SOC level, charging time at slow and fast chargers. Detailed analy-
sis is given for each fitting step. In Section 3, we present the main
algorithm of the model: this is a down-scaled model based on
Monte Carlo simulations, including one hundred EVs and six public
fast chargers. In Section 5, we present and discuss simulation
results obtained with the proposed model. Section 4 describes
the limits of the model while Section 6 concludes our paper.

2. Modelling assumptions

The proposed stochastic model utilizes different states to define
whether the vehicle is parking, moving, charging or waiting at a
charger. The transition probabilities between different states are
based on the pre-processing of data from [6,12,13].

The e-Denpi report by iid [6], a market research organization
that measures fuel consumption of cars, measured the consump-
tion of 43 Nissan Leafs in Japan over the course of 3550 trips. All
data used here was provided from the executive summary avail-
able in English and Japanese.

Results from the EV Project [12] were used in the case when
data was not available from [6]. The EV Project continuously
records driving and charging behaviour of 4261 Nissan Leaf drivers
from 17 different regions over the course of 1,135,053 trips. The
data was taken from the latest publicly available report, the Q2
2013 Report.

The following data were taken from the aforementioned
sources:

� number of vehicles driving,
� trip distance,
� ratio of fast vs. slow charging,
� duration of charge,
� distance to closest fast charger,
� average driving speed,
� energy consumption of vehicles.

The data inputs are converted into distributions from which the
model randomly draws during simulations. Index l indicates the
number of the given car and index k is the discrete time index
(in our case the sampling interval - i.e. time step - was 5 min).

2.1. Vehicle usage

Car usage statistics were extracted from [13]. The statistics
showing vehicle usage can be seen in Fig. 1: grey lines are individ-
ual days’ data, while the orange curve is the average of this dataset.
We used this average in our model. This is a limitation, as the mod-
elling could have been extended into a stochastic driving beha-
viour, i.e. taking individual driving scenarios into account and
constructing a distribution function that characterizes the number
of moving cars at a given time instant. Due to lack of proper data
this approach was dismissed in the current paper.

The data was approximated using three separate Gaussian dis-
tributions and implemented in MATLAB (Fig. 2). By comparing
Figs. 1 and 2 we can see that the simulated dataset approximates
the original one well.

In order to know whether a vehicle is moving at a time step, we
define the variable vsl½k� as follows:

vsl½k� ¼ 0; if vehicle l is not moving in k

1; if vehicle l is moving in k

�
ð1Þ

where k is the time step, l is the vehicle number.
The algorithm then compares the currently moving vehicles

with the number of vehicles suggested in Fig. 2 and randomly

selects a not moving or charging car to move so that the ratio of
moving cars is always in accordance with the number of moving
cars required by Fig. 2. If the number of moving cars is equal to
or larger than the prescribed value in Fig. 2, no car is added to
the driving vehicle pool and the model ’waits’ for a car to return.

The vehicles starting to drive are defined for every time step k
as follows:

l 2 NewV ½k�; vsl½k� 1� ¼ 0 ð2Þ

where NewV ½k� is the set of cars to start driving in period k.

2.2. Driving distance distributions

We used Monte Carlo simulation to generate driving distance
for each vehicle for each trip. For this purpose, distribution func-
tions had to be fitted to data extracted from [6] (Fig. 3 depicts this
data). We obtained trip length distribution from a survey made
among Nissan Leaf EV owners in Japan.

Refs. [14,15] suggest that the distribution of travelled distances
for a single trip follows exponential distribution. The distribution
was generated with MATLAB’s ’allfitdist’ function [16] and can be
seen in Figs. 4 and 5. MATLAB outputs the distribution that fits best
to the dataset according to the Bayesian information criterion
(BIC).

Fig. 1. Number of moving cars during the day [13].

Fig. 2. Number of moving cars simulated in MATLAB, no. of cars: 100.
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