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a b s t r a c t

The DC optimal power flow (DC-OPF) plays an important role in the operation and planning of modern
power systems. In this paper, a bi-objective DC-OPF model minimizing both network losses and genera-
tion costs is introduced, which can further be converted into a single objective model via the weighted
sum method. Furthermore, the Pareto Frontier is employed to solve this problem. In the mathematical
view, the model is a special non-convex quadratic constraints quadratic programming problem. In order
to obtain a continuous Pareto Frontier, the original non-convex feasible region is relaxed to its convex
hull using a linear relaxation-based second order cone programming method. Compared with the
semi-definite relaxation method, the proposed method can greatly reduce the number of dummy vari-
ables and the complexity of solutions. Finally, simulations on eight small systems and four practical, large
systems are performed, in addition to the comparison of a Monte Carlo simulation. The results verify the
effectiveness of the proposed algorithm.

� 2016 Published by Elsevier Ltd.

1. Introduction

With different optimization objectives, the optimal power flow
(OPF) can be used to schedule the power output of each unit in
order to achieve a better operation state while satisfying the
real-time power balance within the transmission capacity of the
power network [1]. Generally, the OPF models include AC optimal
power flow (AC-OPF) and DC optimal power flow (DC-OPF) models
[2]. Mathematically, the AC-OPF is a typically nonlinear and non-
convex optimization problem with certain constraints in nature
[3]. Many optimization methods have been applied to solve the
OPF models, such as Newton method, artificial intelligence,
active-set, trust-region, and modern interior point algorithm
[4–7]. Comparing to AC-OPF, DC-OPF is a linearized model without
the consideration of the voltage magnitude and reactive power
that is commonly used in the nowadays practical industrial power
market clearing [8]. The common objectives of DC-OPF include the
economy [9,10], energy-saving, emission minimization [11–13],
and so on. Moreover, the DC-OPF with the consideration of prohib-
ited zones, wind power uncertainties, flexible transmission line
impedance and phase shifting transformers is studied in [14–18].

However, the traditional DC-OPF model usually ignores the net-
work losses and is simplified as a convex programming problem,
which may lead to a large gap between the original AC-OPF. Addi-
tionally, the interconnected large-scale systems over long distance
transmission have been widely adopted in China due to the uneven
distribution of load and energy resources. Under such circum-
stances, the network losses have significant effects on unit
scheduling and economic optimization. Therefore, the considera-
tion of network losses in the DC-OPF models will make the solution
more realistic.

In [19], a multi-objective OPF model was established to mini-
mize the fuel cost, power losses, and total real power output of all
generators. The model was solved by a non-linear interior-
point OPF algorithm based on power current hybrid mismatch
formulations in rectangular coordinates. In [20–23], different
artificial-intelligence algorithms were applied to solve the OPF
models considering the network losses. However, the results of
thesemethods are highly dependent on the populations in the algo-
rithms, and the computation is time-consuming comparedwith the
deterministic algorithms. Ref. [24] studied a dynamic linear DC-OPF
model, iteratively searching the optimal solution after approximat-
ing network losses as linear cut-sets. Ref. [25] built a new fictitious
nodal demand (FND) model to adjust the offset of network losses.
Ref. [26] proposed a non-linear OPF algorithm to solve the optimal-
ity conditions using a pure Newton-Raphson solution procedure.
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The methods above obtained promising results; however, rather
than global, only a local optimal solution could be achieved.

Ref. [27] built amulti-objectivemodel tominimize both the gen-
eration cost and the network losses, in which an approximate solu-
tionwas obtained by the proposed semi-definite relaxationmethod.
However, the method brings a heavy computational burden to
large-scale systems because it needs to introduce n2 new dummy
variables, where n is the number of the optimization variables.
Therefore, a method of linear relaxation and second order cone con-
straints is proposed to solve the DC-OPF model in this work, which
could reduce a large number of dummy variables and significantly
improve the computing efficiency while obtaining almost the same
global optimal solution with the semi-definite relaxation method.
Compared with the semi-definite relaxation method, the proposed
method is more applicable for a large-scale system optimization.

Furthermore, the Pareto Frontier of the proposed multi-
objectives model can be achieved by the weighted sum method.
Interestingly, the Pareto Frontier takes on a similar hyperbolic func-
tional feature under different load levels. Finally, the proposed
method can be easily extended to a multi-stage dynamic DC-OPF.

2. Mathematical formulation of bi-objective DC-OPF

The main objectives of the OPF aim to minimize the total gen-
eration costs of the system as well as reduce the network losses
while meeting the power balance constraints, output limits of
the units, and restrictions of branch power. The generation costs
function is commonly a quadratic function of the generation. As
shown in (1), f1 and f2 indicate the total generation cost and the
total network loss respectively.

min
Pg

f 1ðPgÞ þ f 2ðPgÞ ð1-aÞ

f 1ðPgÞ ¼
XNg

i¼1

ðaiP2
g;i þ biPg;i þ ciÞ ð1-bÞ

f 2ðPgÞ ¼ Ploss ð1-cÞ
where (ai, bi, ci) are the triplet coefficients of the quadratic cost
function; Ng is the number of conventional thermal units in the sys-
tem; Pg is the generation of the ith thermal unit, and Ploss is the total
network losses.

The constraints of DC-OPF can be cast as follows:

(i) Energy balance constraint

XNg

i¼1

Pg;i ¼
XNd

j¼1

Pd;j þ Ploss ð2Þ

where Pd,j(t) is the demand of load j, and Nd is the number of load.

(ii) The output power restrictions of thermal units

Pmin
g;i 6 Pg;i 6 Pmax

g;i ð3Þ

where Pmin
g;i and Pmax

g;i are the upper and lower limits of the ith ther-
mal unit’s generation, respectively.

(iii) Security operation constraints of the grid

�Pmax
l 6 Pl 6 Pmax

l ; l ¼ 1;2; . . . ;Nl ð4Þ
where Pmax

l denotes the maximum transmission power of branch l
(from bus i to bus j), and Nl is the number of the branches.

According to [28], the transmission power can be reformulated
to the node power injection via the network shift distribution
factor, yielding

�Pmax
l 6

XNg

i¼1

Gl;iPg;i �
XNd

j¼1

Hl;jPd;j 6 Pmax
l ð5Þ

where Gl,k and Hl,k are network shift distribution factors, indicating
the sensitivity information of the branch power with respect to the
power injection to generator and load nodes, respectively. It should
be noted that the average transmission power is employed in (5),
since the transmission power is different at the two ends of the
transmission line with the consideration of network losses.

As for the network losses, the assumption is rationally made
that the voltage amplitudes of all nodes approximate to 1.0 p.u.
because the OPF model is based on the DC power flow. Thus, the
total network losses can be given as (6).

Ploss ¼
XNl

l¼1

I2l Rl �
XNl

l¼1

P2
l Rl ð6Þ

where Il, Rl, Pl are the current impedance and average power of
branch l.

We may recall the transmission power Pl defined in (5) that is
expressed as the network transfer distribution factors. The total
network losses can be further given by

Ploss ¼
XNl

l¼1

XNg

i¼1

Gl;iPi �
XNd

j¼1

Hl;jPd;j

 !2

Rl

0
@

1
A ð7Þ

In matrix forms, the objective function and its constraints are
given as follows:

Objective function:

min
Pg

f 1ðPgÞ þ f 2ðPgÞ ð8 - aÞ

f 1ðPgÞ ¼ PT
gAPg þ bTPg þ c

f 2ðPgÞ ¼ Ploss ¼ ðG1Pg � G2PdÞTRðG1Pg � G2PdÞ
¼ PT

gG
T
1RG1Pg � 2ðPT

dG
T
2RG1ÞPg þ PT

dG
T
2RG2Pd

where R ¼ diagðRlÞNl�Nl
is the impedance matrix; G1 ¼ ðGl;iÞNl�Ng

and

G2 ¼ ðHl;jÞNl�Nd
are the transfer distribution factor matrices; and

A ¼ diagðaiÞNg�Ng
, b ¼ diagðbiÞNg�1, c are the coefficients of the quad-

ratic cost function.

Constraints:

eT1Pg � eT2Pd � Ploss ¼ 0 ð8-bÞ
where e1 is the unit vector of Ng � 1 and e2 is the unit vector of
Nd � 1.

Substitute the losses expression (8-a) into (8-b), and we have

PT
gG

T
1RG1Pg � 2ðGT

1RG2Pd þ e1ÞTPg þ PT
dG

T
2RG2Pd þ eT2Pd ¼ 0

ð8-b0 Þ
Here, we define three matrices for simplification, such that

d0 ¼ PT
dG

T
2RG2Pd þ eT2Pd; g ¼ GT

1RG2Pd þ e1 and X ¼ GT
1RG1. There-

fore, the energy balance equation of the system can be recast
as

PT
gXPg þ gTPg þ d0 ¼ 0 ð8-b00 Þ

�Pmax
l 6 G1Pg � G2Pd 6 Pmax

l ð8-cÞ

Pmin
g 6 Pg 6 Pmax

g ð8-dÞ
Combining (8-a), (8-b’’), (8-c), and (8-d), the matrix form of the

multi-objective DC-OPF can be finally formulated as (9).
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