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a  b  s  t  r  a  c  t

According  to  the  observations  of  dam  structural  health  monitoring,  iterated  function  system  is adopted
to  implement  the  analysis  and  forecast  for  dam  structural  behavior.  Firstly,  the  multifractal  detrended
fluctuation  analysis  (MF-DFA)  method  is  employed  to  identify  the  fractal  characteristics  in the  measured
data  series  of  dam  structural  behavior.  Secondly,  the  iterated  function  system  algorithm  is studied  to  build
the  fitting  model.  The  ways  to  determine  the interpolating  points  (position  and  number)  and  vertical
scaling  factors  are  given  in  detail.  Thirdly,  the  variable  dimension  fractal  model  and  iterated  function
system  are  combined  to  forecast  the  dam  structural  behavior.  Lastly,  the  displacement  behavior  of  one
concrete  gravity  dam  is  analyzed  and  predicted  by  the  proposed  approach.  It  is  shown  that  the  whole  trend
and  detail  characteristics  of dam  structural  behavior  observed  can  be  described  well,  and  the  prediction
precision  can  be  improved.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

During dam service, many factors comprehensively affect dam
structural behavior (such as deformation, stress and strain, seepage,
etc.). The complicated and time-varying correlation among the fac-
tors causes the strong nonlinear characteristics of measured data
series on dam structural behavior [1–3]. According to the obser-
vations of dam structural behavior, some mathematical methods
are often used to analyze and identify above nonlinear character-
istics, and build the fitting and forecasting model of dam structural
behavior. Dam safety can be monitored with the built model [4–6].

Statistical models based on monitoring data have been used
for decades for this purpose [6–8]. In particular, the hydrostatic-
season-time method is fully implemented in engineering practice,
although some limitations have been pointed out. In other fields of
science, powerful tools such as neural networks and support vec-
tor machines have been developed, which make use of observed
data for interpreting complex systems [2,9–11]. The limitations of
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traditional statistical tools and the availability of these advanced
learning algorithms have motivated dam engineers to search the
possibilities of the latter for building dam behavior models, as well
as for analyzing dam behavior.

However, the above mentioned methods cannot identify long-
term correlate behavior. In the fractal theory, fractal is regarded
as a basic attribute of nature. The whole and its part are self-
similar. The whole fractal dimension obtained can be applied to the
changing trend forecast [12–14]. In a previous paper, monofractal
exponents were obtained based on observed time series in order
to give information on the inherent evolution law of a dam sys-
tem [15]. The investigated example indicates that dam structure
has self-similarity characteristics. In recent years the detrended
fluctuation analysis (DFA) method has become a widely used tech-
nique for the determination of monofractal scaling properties and
the detection of long-range correlations in noisy and nonstationary
time series. It has successfully been applied to various fields such
as long-time weather records, cloud structures, geology, and solid
state physics. Multifractals can be decomposed into many-possibly
infinitely many sub-sets characterized by different scaling expo-
nents. In another previous paper, multifractal DFA (MF-DFA) was
employed to reveal the time scale effect and the nonlinear dynamic
evolution law of dams [16]. The results show that this method can
reliably determine the multifractal scaling behavior of time series
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of existing dams. The fractal theory can be applied to predict and
diagnose dam behavior.

In the paper, the MF-DFA is used to identify the multifractal
characteristics of observed dam structural behavior. The iterated
function system (IFS) is adopted to fit the time curve on observed
data of dam structural behavior. The ways to improve the interpo-
lation accuracy are also studied. Due to weak extension capability
of above fractal interpolation method, the variable dimension frac-
tal model is combined with IFS to implement the dam structural
behavior forecast. The proposed method is applied to an actual
dam. The nonlinear and time-varying characteristics of dam dis-
placement are analyzed. The effect fitting and forecasting dam
displacement is appraised.

2. MF-DFA for measured data series of dam structural
behavior

Based on the previous DFA, a robust multifractal analysis namely
MF-DFA is proposed [17,18]. MF-DFA method takes fluctuant aver-
age of time series in each partition interval as statistical points
and determines generalized Hurst exponent depending on power-
law property of fluctuation function to measure stationary and
non-stationary sequence structure and fluctuation singularity. The
advantages of this method are that it can find the long-range corre-
lations of non-stationary time series. And It is demonstrated with
the computer simulation that the effect using MF-DFA method to
analyze multifractality for non-stationary time series was the best
in all methods [19].

The concrete steps of analyzing measured data characteristics
of dam’s service behavior based on MF-DFA are as follows:

(1) Cumulative deviation of time series {xt , t = 1, 2, . . .,  n} of
dam’s prototype monitoring data is calculated as

Y (i) =
i∑
t=1

(xt − x̄) (1)

where x̄ = 1
N

i∑
t=1

xt .

(2) Divide sequence Y(i) into m non-overlapping intervals v. Each
interval contains the same number of points s, where integral part
is m = [N/s]. Since the length of the sequence is often not an integral
multiple of s. In order not to produce surplus, the same procedure is
repeated from the opposite end from the m + 1-th interval. Thereby,
2 m intervals are obtained altogether.

(3) Fitting polynomial of the v-th interval through a least-square
fit of the data for each interval v(v = 1, 2, . . .,  2m) can be got as:

ŷv (i) = â0 + â1i + · · · + âkik, i = 1, 2, · · ·,  s, k = 1, 2, · · · (2)

Ys(i) which the time series removing the trend is denoted by
shows the difference between the original series and fitted values.

Ys (i) = Y (i) − ŷv (i) (3)

where ŷv(i), called k-order MF-DFA, is the local trend function of
the v-th interval. k is the different fitting order. In MF-DFAk (kth
order MF-DFA) trends of order k in the profile (or, equivalently, of
order k−1 in the original series) are eliminated.

(4) Calculate the variance of each interval which has been
removed the trend.

If v = 1, 2, . . .,  m,

F2 (v, s) = 1
s

s∑
i=1

Y2
s [i] = 1

s

s∑
i=1

(
y ((v − 1) s + i) − ŷv (i)

)2
(4)

If v = m + 1, m + 2, . . .,  2m,

F2 (v, s) = 1
s

s∑
i=1

Y2
s [i] = 1

s

s∑
i=1

(
y ((n − (v − 1)) s + i) − ŷv (i)

)2
(5)

Obviously, F2(v, s) is concerned with the fitting order. Different
orders have different abilities to eliminate the trend.

(5) Average and extract a root for all variances of equal-length
intervals. Then the q-order fluctuation function of the whole
sequence can be obtained:

Fq (s) =
{

1
2m

2m∑
v=1

[
F2 (v, s)

]q/2

}1/q

(6)

In general, the index variable q can take any real value. For q = 0,
the fluctuation function can be determined as below equality:

F0 (s) = exp

{
1

4m

2m∑
v=1

ln
[
F2 (v, s)

]}
(7)

For q = 2, it can be seen that Eqs. (14) and (4) are the same, the
standard DFA procedure is retrieved. At this point, DFA is the special
form of MF-DFA.

For positive q, the segments v with large variance (i.e., large devi-
ation from the corresponding fit) will dominate the average Fq(s).
Therefore, if q is positive, h(q) describes the scaling behavior of the
segments with large fluctuations; and generally, large fluctuations
are characterized by a smaller scaling exponent h(q) for multifrac-
tal time series. For negative q, the segments v with small variance
will dominate the average Fq(s). Thus, for negative q values, the
scaling exponent h(q) describes the scaling behavior of segments
with small fluctuations, usually characterized by a larger scaling
exponents.

Therefore, different q values have different effects on fluctuation
functions.

(6) Determine the scaling exponent of fluctuation function.
Varying the value of s in the range from smin ≈ 5 to smax ≈ N/4, and
repeating the procedure described above for various scales s, Fq(s)
will increase with increasing s. Then analyzing log–log plots Fq(s) vs.
s for each value of q, the scaling behavior of the fluctuation func-
tions can be determined. If the series xi is long-range power-law
correlated, Fq(s) increases for large values of s as a power-law

Fq (s) ∼sh(q) (8)

In general the exponent h(q) will depend on q. For stationary
time series, h(2) is the well defined Hurst exponent H. Thus, h(q)
is called the generalized Hurst exponent. Monofractal time series
are characterized by h(q) independent of q. The different scaling of
small and large fluctuations will yield a significant dependence of
h(q) on q.

The above equality can be also expressed as Fq(s) = Ash(q). Take
logarithm for the both sides of the equality

ln
(
Fq (s)

)
= ln A + H (q) ln (s) (9)

A corresponding fluctuation function value Fq(s) can be obtained
for each partition length s; different Fq(s) can be got by using dif-
ferent constant s. By using the least square method to make linear
regression for the above equality, slope estimated value obtained
is q-order generalized Hurst exponent h(q).

Generalized Hurst exponent h(q) has the significance of scal-
ing exponent of DFA, but h(q) is concerned with q. Time series is
monofractal if h(q) has nothing with q and time series is multifractal
if h(q) is a function of q.
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