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a  b  s  t  r  a  c  t

For  any  two  one-dimensional  time  series  of equal  or non-equal  length,  we  propose  a  new  method  to
determine  their  shape  distance.  Each  of  the original  time  series  is  represented  by  a  sequence  of linear
segments  which  are  produced  by  l1 trend  filtering.  As the  dimensionality  of  this  representation  ranges
between  time  series,  dynamic  time  warping  (DTW)  method  is used  to calculate  the  distance  between  time
series. In  contrast  to  the  standard  dynamic  time  warping  method,  here  the element  of the  new  distance
matrix  concerns  the  distance  between  two linear  segments  instead  of  two  elements  of the original  time
series.  More  specifically,  the distance  between  the  two  linear  segments  is  calculated  as  the  area  of a
triangle  which  is formed  by the  two  linear  segments  after  their  translation  and  connection.  In brief,  the
new  measure  can  be regarded  as the dynamic  time  warping  distance  computed  in a piecewise  linear
space.  Furthermore,  we  show  that  new  distance  measure  quantitatively  reflects  the  shape’s  difference
between  two  one-dimensional  time  series.  The  simulation  experiments  presented  in this paper  illustrate
the  performance  of  the proposed  method.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

A time series is a sequence of real numbers representing the
values of a certain variable over time, and arises in numerous
domains, including finance, medicine, business and industry. Typ-
ical problems concerning time series include classification [13,17],
clustering [6,7,31], similarity search [12,28], forecasting [1,22]
and outlier detection [23]. These investigations rely heavily on
the ability of a formulation of a suitable distance between time
series. This makes studies on distance measures fundamental and
timely. As a result, numerous time series distances have been
proposed including such well-known examples as, Euclidean dis-
tance [5], dynamic time warping distance [2,15], edit distance [3],
longest common subsequence distance [27], symbolic aggregate
approximation distance [25,26], as well as numerous extensions of
these [8,9,13,15,20]. Other works related to the distance measure
between two time series also include the feature-based method
[11,19,21,30].

Although there are many different distance measures, by far
the most common distance measure used in case of two time
series of equal length is the Euclidean distance. However, in some
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practical problems, such as stock time series, people may  pay more
attention to the similarity concerning the shape of the time series.
Specifically, in one-dimensional stock data, the shape reflects trend
information which includes not only the time-axis information
but also the value-axis information. Since the Euclidean distance
cannot completely reflect the shape difference, it may  fail when
we want to measure the shape difference between two time
series.

Additionally, we often encounter pairs of time series of non-
equal lengths, which limits the usefulness of the Euclidean distance.
In order to handle this problem, dynamic time warping (DTW)
algorithm [2] was proposed by Berndt and Clifford to eliminate
misalignment and to express the distance between time series by
ignoring both global and local shifts in time. As a result, DTW  algo-
rithm gives rise to a DTW distance and helps realize the matching
process. Dynamic time warping exhibits two  weaknesses. First,
DTW may  ignore capturing an overall shape of the time series. In
other words, this pure value-oriented comparison makes the value-
based DTW ignore the context of points, such as their positions
in local features and their relations in terms of possible overall
trends. Furthermore, DTW has a quadratic time and space complex-
ity that limits its use to only small-size (short) time series. In order
to reduce computing overhead and space complexity, some con-
straints are imposed on the warping route. In the existing literature
[31], Yu et al. proposed granular dynamic time warping (GDTW) on
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granular time series which can greatly improve computing speed.
But, in the GDTW method the original time series is segmented
within equal-length granular windows and the obtained gran-
ules cannot reflect the trend information of any granular window.
Hence, GDTW is also a pure value-oriented measure by ignoring
corresponding timeline. The other shape-based distance measures,
such as [18,29], are based on discrete symbolic representation,
which also require the pair of time series to be of equal length and
segment the pair of time series alignment.

Taking into account the above drawbacks, we present an accu-
rate shape distance measure between two one-dimensional time
series. Before calculating their distance, we do some preprocessing
by mapping the original time series into the space of their piece-
wise linear approximation. Firstly, we use l1 trend filtering [16] to
determine trends presented in a given time series. Then, we connect
some key points such as kinks, knots, or changes in slope induced
by l1 trend filtering forming a piecewise linear representation (PLR)
of the original time series. The PLR method can extract main fea-
tures of time series and at the same time effectively reduce data
dimensionality [10]. After l1 trend filtering and PLR, the original
time series is represented by a sequence of linear segments of non-
equal lengths, and two  linear segments coming from the different
transformed time series are usually out of alignment on the time-
axis. Obviously, the trend information of the original time series
is preserved in all the linear segments. Before calculating the dis-
tance between any two time series, one has to decide on how to
accurately measure the distance between any two linear segments
originating from different time series. In order to speed up the cal-
culation and fully take into account the time-axis information of
these linear segments, we construct a triangle through translation
and connection and consider the area to measure their distance.
Let us note that an area can reflect the time-axis and value-axis
information. In the sequel, we employ DTW algorithm in the piece-
wise linear space to form the final DTW distance of two  given time
series.

To investigate the aforementioned problem carefully, this paper
is organized as follows: we devote Section 2 to a discussion of
all necessary prerequisites such as l1 trend filtering and dynamic
time warping algorithm. The original area-based shape distance
measure is presented in details, and the area-based shape distance
algorithm is proposed in Section 3. Following that, a series of exper-
iments are performed in Section 4 to illustrate the performance of
the area-based shape distance algorithm. Finally, some conclusions
are made in Section 5.

For convenience, some notations used in the later sections are
introduced as follows:

X  = {(t1, v1), (t2, v2), . . .,  (tm, vm)}: one-dimensional time series of
length m, where ti and vi denote time-axis and value-axis coordi-
nates of the ith element of X, respectively, ti < ti+1, vi ∈ R1 and m is
a positive integer (i = 1, b, . . .,  m);
x = (x1, x2, . . .,  xm): one-dimensional time series of length m,  where
xt denotes the value-axis information at time t (t = 1, 2, . . .,  m),  x
can be briefly described as x = {xt}m

t=1;
[1 : N] : [1 : N] = {1, 2, . . .,  N};
a ∧ b : a ∧ b = min{a, b};
|D|: the determinant of matrix D;
|X| : |X| =

∑m
i=1ti/m, if X = {(t1, v1), (t2, v2), . . .,  (tm, vm)};

X̂ : X̂ = ∑m
i=1vi/m, if X = {(t1, v1), (t2, v2), . . .,  (tm, vm)};

‖u‖1: the L1 norm of vector u = (u1, u2, . . .,  un), i.e., ‖u‖ 1 =
∑

i|ui|;
‖u‖2: the L2 norm of vector u = (u1, u2, . . .,  un), i.e., ‖u‖2 =√∑

i|u2
i
|;

L = 〈(tL, vL), (tR, vR)〉: the linear segment L, where (tL, vL) and
(tR, vR) represent the left and right endpoint of L in the two-
dimensional plane, respectively.

2. Preliminaries

In this section, we  briefly recall l1 trend filtering [16], and intro-
duce dynamic time warping algorithm [2] employed in our method.

2.1. l1 trend filtering

Given is a one-dimensional time series y = {yt}n
t=1 of length n

which consists of an underlying trend component x = {xt}n
t=1 and

a random component z = {zt}n
t=1. Our goal is to obtain the trend

estimate x by minimizing the objective function in the form

min  Q (x) = 1
2

n∑
t=1

(yt − xt)
2 + �

n−1∑
t=2

|xt−1 − 2xt + xt+1| (1)

where � is a nonnegative parameter used to control a trade-off
between the smoothness of x and the size of the residual z (z = y − x).
The first term in the objective function (1) expresses the residual
y − x; while the second term quantifies the smoothness of the esti-
mated trend x. In the second term, xt−1 − 2xt + xt+1 is the second
order difference of the time series x computed at time t; it is zero
if and only if the three points xt−1, xt, xt+1 are linear.

The objective function (1) can be rewritten in the matrix form
as:

min  Q (x) = 1
2

‖y − x‖2
2 + �‖Dx‖1 (2)

where D is the second-order difference matrix:

D =

⎡
⎢⎢⎢⎢⎢⎣

1 −2 1 0 · · · 0 0

0 1 −2 1 · · · 0 0

. . .
. . .

. . .

0  0 · · · 1 −2 1 0

0 0 · · · 0 1 −2 1

⎤
⎥⎥⎥⎥⎥⎦

.

The objective function (2) is strictly convex and coercive in x, so it
has a unique minimizer xlt. (The superscript ‘lt’ stands for ‘l1 trend’.)

Let x = A�; then the objective function (2) is transformed into a
l1-regularized least squares problem:

min  Q (�) = ‖A� − y‖2
2 + �

n∑
i=3

|�i| (3)

where � = (�1, �2, . . .,  �n) ∈ Rn is a vector of some variables and A is
a lower triangular matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 · · · 0

1 1 0 0 · · · 0

1 2 1 0 · · · 0

1 3 2 1 · · · 0
...

...
...

. . .
. . .

1  n − 1 n − 2 · · · 2 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

The solution �lt to the optimization problem (3) and the l1 trend
estimate xlt are related by

xlt = A�lt . (4)

From the standard result in l1-regularized least squares [4,24],
the solution �lt to the optimization problem (3) is a piecewise linear
function of the regularization parameter �. Combining (4), the reg-
ularization path of l1 trend filtering is also piecewise linear. More
specifically, there are p integer time points ti satisfying the condi-
tion 1 = t1 < t2 < . . . < tp = n, whereas xlt

t is an affine function in the
ith time window [ti, ti+1], i.e. xlt

t (t ∈ [ti, ti+1]) can be expressed
as a linear segment Xi = 〈(ti, xti

), (ti+1, xti+1 )〉 (i = 1, 2, . . .,  p − 1).
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