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a  b  s  t  r  a  c  t

With  high  reputation  in handling  non-linear  and  multi-model  problems  with  little  prior  knowledge,
evolutionary  algorithms  (EAs) have  successfully  been  applied  to design  optimization  problems  as  robust
optimizers.  Since  real-world  design  optimization  is often  computationally  expensive,  target  shape  design
optimization  problems  (TSDOPs)  have  been  frequently  used  as  efficient  miniature  model  to check  algo-
rithmic  performance  for  general  shape  design.  There  are  at least  three  important  issues in  developing
EAs  for  TSDOPs,  i.e.,  design  representation,  fitness  evaluation  and  evolution  paradigm.  Existing  work  has
mainly focused  on  the  first two  issues,  in  which  (1)  an  adaptive  encoding  scheme  with  B-spline  has  been
proposed  as  a  representation,  and  (2)  a symmetric  Hausdorff  distance  based  metric  has  been  used  as  a
fitness function.  But for the  third  issue,  off-the-shelf  EAs  were  used  directly  to evolve  B-spline  control
points  and/or  knot  vector.  In this  paper,  we first demonstrate  why  it is unreasonable  to  evolve  the  control
points  and knot  vector  simultaneously.  And  then  a new  coevolutionary  paradigm  is proposed  to evolve
the  control  points  and  knot  vector  of B-spline  separately  in  a cooperative  manner.  In the  new  paradigm,
an  initial  population  is  generated  for  both  the  control  points,  and  the  knot  vector.  The two  populations
are evolved  mostly  separately  in a  round-robin  fashion,  with  only  cooperation  at  the fitness  evaluation
phase.  The  new  paradigm  has at least  two significant  advantages  over  conventional  EAs.  Firstly,  it pro-
vides  a platform  to  evolve  both  the  control  points  and  knot  vector  reasonably.  Secondly,  it  reduces  the
difficulty  of  TSDOPs  by  decomposing  the  objective  vector  into  two  smaller  subcomponents  (i.e.,  control
points  and  knot  vector).  To  evaluate  the  efficacy  of the proposed  coevolutionary  paradigm,  an  algorithm
named  CMA-ES-CC  was  formulated.  Experimental  studies  were  conducted  based  on two  target  shapes.
The  comparison  with  six  other EAs  suggests  that  the proposed  cooperative  coevolution  paradigm  is  very
effective  for  TSDOPs.

© 2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Design optimization has been an important area of research for
many years [1]. In recent years, as robust optimizers with excellent
ability in handling non-linear and multi-model objective functions,
evolutionary algorithms (EAs) have successfully been applied to

� This work was  supported in part by the National Natural Science Foundation
of  China under Grants 61175065, 61329302 and 61305084, the Program for New
Century Excellent Talents in University under Grant NCET-12-0512, and the Natural
Science Foundation of Anhui Province under Grant 1108085J16.

∗ Corresponding author.
E-mail addresses: zhyuyang@ieee.org (Z. Yang), bernhard.sendhoff@honda-ri.de

(B. Sendhoff), ketang@ustc.edu.cn (K. Tang), x.yao@cs.bham.ac.uk (X. Yao).

structural design optimization problems [2–4], especially in the
field of aerodynamics, e.g. [5–7]. However, for real-world appli-
cations, especially in the area of aerodynamic design optimization,
evaluation of a given design solution often requires high compu-
tational efforts such as the evaluation with Computational Fluid
Dynamics (CFD) tools. The search for the most appropriate algo-
rithm including the design representation and its parameterization
based on computationally expensive CFD simulations would be
very time consuming and for complex three-dimensional shapes
currently impossible.1 Therefore, miniature models or highly

1 According to the experience in Honda Research Institute Europe GmbH, the cal-
culation time for a detailed CFD analysis of a complex 3D structure takes roughly
one day parallelized on several compute nodes.
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simplified CFD models have been suggested to ease the computa-
tional load in the early conceptual algorithmic phase. Target Shape
Design Optimization Problems (TSDOPs) [8,9] have been put for-
ward as miniature models in particular to test the usage of specific
design representations. Although it is known that neither minia-
ture models like TSDOP nor simplified CFD models correlate with
the detailed CFD analysis, individual algorithmic issues can be stud-
ied and results successfully transferred to real-world optimization
problems. Given a target shape,  the TSDOP is defined as mini-
mizing the distance between the target shape and the designed
shape with respect to an appropriate distance measure. We  focus
on TSDOP in this paper, since the interplay between representation
and algorithm is the main contribution of this work.

Evolutionary computation for TSDOPs was first investigated in
[8], and then further studied in [10–12]. Generally speaking, they
mainly focus on the following three issues which are very crucial
in applying EAs to TSDOPs.

1 Representation: Representing the shape is the initial step and
it determines the landscape of the search space. A number of
characteristics, such as completeness, causality and compact-
ness, have been suggested in [5] as the required properties of
a suitable representation. A commonly used representation is
the parameterized B-spline curves or surfaces [8,12]. Given a B-
spline as the geometry representation, the objective parameters
of TSDOP consist of the coordinates of the control points and the
corresponding knot vector(s).

2 Fitness evaluation: For TSDOPs, since shapes are often repre-
sented by a set of sampled points, the designed shape can be
evaluated by calculating the distance over two sets of points
sampled, respectively from the target shape and the designed
shape with respect to an appropriate distance metric, e.g. the
commonly used averaged symmetric Hausdorff distance [8]. An
improved fitness metric has also been proposed in [12] to alle-
viate the problem of wrongly assigning good quality shapes to
bad.

3 Evolution: This step determines the driving force of evolution.
With a B-spline as the geometry representation, existing efforts
for this issue can be classified into two main categories: (i) Rep-
resent the designed shape with a predefined number of control
points, and then optimizes the coordinates of control points and
the knot vector with a certain EA; (ii) Represent the designed
shape with adaptive encoding [8], which starts from a minimal
representation length, and then optimize the coordinates of con-
trol points with a certain EA, and meanwhile increase the number
of control points during evolution with a random knot insertion
[13] algorithm. The first kind of evolution paradigm has at least
two obvious drawbacks. Firstly, for an unknown target shape, it
is often very difficult to determine the optimal number of con-
trol points. That is why the adaptive encoding scheme has been
proposed. Secondly, it is unreasonable to optimize the control
points and knot vector simultaneously using those EAs in which
crossover is the necessary or essential operator. The reason is that
knot vector and control points of B-spline are highly correlated.
It makes no sense to perform crossover between two  control-
point sets whose corresponding knot vectors are different.2 As
for the other paradigm using adaptive encoding, although it has
been proven better than the first one, the main difficulty is that
the variation of the knot vector can only be obtained through
irreversible knot insertion operations. Random knot insertion
method is often adopted since it is very difficult to determine
the optimal insertion position during evolution. This will at best

2 The reason will be demonstrated in Section 2.3.

limit flexibility of the designed shape and in the worst case take
a risk to introduce very bad knot position.

For the issue of representation, we can still use a B-spline with
adaptive encoding, since it has been verified as an effective choice
[8–12]. For fitness evaluation, the only thing we can do is to provide
a similarity metric, and eventually we have to abandon it because
we need to use CFD tools for real-world applications. So among the
three issues, we are mostly interested in the third one, i.e., designing
appropriate evolution paradigm for TSDOPs.

In order to develop a more effective evolution paradigm for
TSDOPs, we  propose a new coevolutionary paradigm in this paper
to evolve the control points and knot vector of a B-spline separately
in a cooperative manner. This kind of evolution model is called
Cooperative Coevolution (CC) [14,15], which was originally pro-
posed to solve large and complex problems. In the new paradigm,
adaptive encoding is still utilized as the basic representation. The
objective variables will be initially divided into two parts. The first
part includes the coordinates of all control points, while the second
part consists of knot points. An initial population is generated for
each of the two  parts at the beginning of evolution. And then the
two populations are evolved separately in a round-robin fashion,
which means the current population will evolve for a predefined
number of generations before activating the other one. For fitness
evaluation, complete representation will be assembled with indi-
viduals from the active population and a representative from the
unactivated population. The best individual so far is selected as
the representative. CMA-ES [16] is adopted to evolve each of the
two populations due to its excellent convergence feature with very
limited number of fitness evaluations (FEs). The new algorithm is
denoted as CMA-ES-CC. The advantages of CMA-ES-CC are appar-
ent. It not only provides a platform to evolve both control points
and knot vector(s), but also reduces the difficulty of TSDOPs by
decomposing the objective vector into two smaller subcomponents
(i.e., control points and knot vector). To evaluate the efficacy of
CMA-ES-CC, experiments have been conducted based on two two-
dimensional (2D) target shapes. The comparison with conventional
EAs suggests that the proposed cooperative coevolution paradigm
is very effective and efficient for TSDOPs.

The rest of this paper is organized as follows: Section 2
introduces the detailed formulation of TSDOP, which includes rep-
resentation, fitness evaluation and related work. The drawbacks of
existing evolution paradigms are also discussed in this part; Sec-
tion 3 presents the proposed cooperative coevolution paradigm for
TSDOPs; Section 4 provides the experimental studies based on two
target shapes; Finally, Section 5 concludes this paper, and discusses
a few directions for future work.

2. Target shape design optimization problem

As stated in Section 1, in this paper target shape design opti-
mization problem (TSDOP) will be used as the miniature model
of design optimization. The solution of TSDOP is to operate the
designed shape to fit the given target shape. The basic components
of TSDOP, which includes representation scheme and fitness eval-
uation method, will be described in this section. Related work on
evolutionary approaches for tackling TSDOPs will also be reviewed
briefly.

2.1. Representation

There are several shape parameterization techniques for shape
representation and manipulation [17]. Due to the compact
representation and a number of advantages, Non-Uniform Ratio-
nal B-Splines (NURBS) are one of the most popular geometry
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