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a  b  s  t  r  a  c  t

In  this  paper  we introduce  fuzzy  versions  some  rule based  lot  sizing  heuristics  for  the  dynamic  lot-sizing
problem  with  warm/cold  process.  In our  setting  “the  demand  at each  period”  and  “the warm  system
threshold”  (production/order  quantity  required  for keeping  the  system  warm  on to  next  period)  are  fuzzy
numbers.  Similar  to  the  crisp  counterpart  setting  of  the  problem,  horizon  length,  production  capacity  at
each  period,  inventory  carrying  cost  and warming  cost  are  the  parameters  with  crisp  values.  The  objective
is to find  the  cost  minimizing  production  scheme  throughout  the  horizon.  The  rule based  fuzzy  heuristics
we  introduce  are:  “fuzzy  silver  meal  algorithm”,  “fuzzy  part period  algorithm”,  and  “fuzzy  least  unit  cost
algorithm”.  We  illustrate  implementation  of  proposed  heuristics  through  examples.  In a  numerical  study
we  present  comparison  results  of heuristics  based  on various  performance  criteria.

©  2016  Published  by  Elsevier  B.V.

1. Introduction

There is an extensive literature built up on the dynamic lot-
sizing problem after its first introduction by Wagner and Whitin
[58]. This problem is simply defined as the determination of the
cost minimizing production scheme over a planning horizon for
a storable item facing known demands, when there is no capac-
ity on the production quantity and shortages are not allowed. We
will refer to this setting, by Wagner and Whitin [58], as the “clas-
sical problem” in the rest of this paper. Structural properties of
the optimal production scheme and an optimal solution algorithm
for the classical problem are provided by Wagner and Whitin [58].
Structural properties indicate that forward solution algorithms are
possible, and existence of planning horizons facilitates the devel-
opment of algorithms with less complexity. We  refer the reader to
Buschkühl et al. [9] for a detailed review of the dynamic lot siz-
ing problem literature and to Beck et al. [6] for a recent paper on
improvements of dynamic lot sizing heuristics.

In the classical setting of the dynamic lot sizing problem,
by Wagner and Whitin [58], demand at each period is variable
but known. The objective is the determination of the produc-
tion/ordering scheme for the planning horizon, specifically when
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to produce and how much to produce. The first feasible solution
one can come up with for this problem is producing the demand of
a period at its own  period. Which yields no holding cost but maxi-
mum  setup cost since production is done at every period and setup
cost would be incurred for all the periods with positive demand.
This solution can be improved by producing at earlier periods and
carrying those items in stock until they are demanded, which yields
decreased setup cost but increased holding cost. Solving this prob-
lem is complex unless some structural properties of the optimal
solution are established. Wagner and Whitin [58], establishes these
structural properties and propose a forward solution algorithm
which yields the optimal solution in reasonable time. There are
various generalizations of the classical problem in the literature.
One generalization is the incorporation of “warm/cold process” set-
ting proposed by Toy and Berk [53]. This generalization represents
a real life situation where setup in a period may  be carried on the
next period under some circumstances. Each period in this problem
setting has a fixed time interval. Under some production rate, if pro-
duction quantity in a period is large enough to keep the production
facility running there will be no need to shut down and restart the
production facility, hence production will continue in the immedi-
ately next period without incurring any setup related costs. In this
“warm/cold process” setting, the production process can be kept
“warm” on to the next period depending on the production quan-
tity. The production quantity is compared to a pre-defined quantity,
referred as the threshold, such that if the production is at least
as much as the threshold and there is production in the succeed-
ing period, the process will be warm.  The warm process results in
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Nomenclature

N horizon length
D̃t fuzzy demand in period t, t = 1, 2,. ., N
R production capacity in a period
Q̃ fuzzy warm system threshold in a period, in order

to keep the process warm on to next period
Ẽt fuzzy economic bound in period t
c unit production cost
h inventory holding cost (per unit per period)
ω warming cost (per unit)
K setup cost
xt production quantity in period t, t = 1, 2,. ., N
ỹt fuzzy on hand stock at the end of period t
zt cold system indicator (0: warm system; 1: cold sys-

tem)

maintaining the production setup, hence, requiring no (or a minor)
setup in the next period. However, producing less than the thresh-
old level results in a “cold” process at the end of the period, and
requires production to start anew with a major setup. We  refer the
reader to Toy and Berk [54] and Toy and Berk [53] for a broader
discussion of the motivational examples for the dynamic lot-
sizing problem in the presence of production quantity—dependent
warm/cold processes. Alluded to their papers, warm/cold process is
implemented in industries such as glass, steel and ceramic produc-
tion where start-ups and shutdowns are costly. Likewise, processes
in which the rate of the production can be changed in order to keep
incessant production are in this category.

Even though the structural properties of the optimal solution
are established and some solution algorithms are suggested for the
classical problem, the complexity of obtaining the optimal solution
initiated efforts on developing lot sizing heuristics based on simple
stopping rules. Some examples for such rules are Silver–Meal [50],
Part – Period Balancing [15], and Least Unit Cost [40]. Adaptations
of existing heuristics and other original heuristics are proposed for
extensions and generalizations of the classical problem, as well.
For the warm/cold process dynamic lot-sizing problem Toy and
Berk [54] have developed modified versions of traditional lot sizing
heuristics, and provided comparison among suggested algorithms.

In the classical problem and in its generalizations, all parameters
are assumed to be deterministic. However, as stated by Bushuev
et al. [10], real-world involves a great deal of uncertainty; therefore,
it is not realistic to assume certain parameters (i.e. demand, etc.)
to be deterministic. As the length of the forecast horizon increases,
uncertainty increases as well [41]. Salameh and Jaber [47] approve
this remark by stating that some former studies consider defective
rates in lot sizes as constants whereas other studies model them
as random variables and the latter are more realistic. Similarly, De
Bodt and Van Wassenhove [14] confirm this remark by addressing
the demand uncertainty in lot sizing. Stochastic variables are gener-
ally used to deal with these uncertainties; for a review of stochastic
lot sizing problems, we refer the readers to Sox et al. [51]. How-
ever, the uncertainty of the parameters can be determined by the
nature of the problem at hand. For instance, when the case involves
production-on-demand, demand becomes a deterministic param-
eter on which we have a priori knowledge [48]. On the contrary,
Alonso-Ayuso et al. [2] state that demand is an uncertain parameter
for an overwhelming majority of production plants. In fact, demand
is the most obvious uncertainty involving parameter of a produc-
tion system and considered uncertain by numerous researchers;
some examples are [13,28,36,38,39,45,49,61,62].

Stochastic representation is not the only way of modeling
uncertainty. Under some circumstances fuzzy set theory can be

used conveniently. The reason for using fuzzy set theory which
was introduced by Zadeh [64] is that it can deal with situations
characterized by imprecision due to subjective and qualitative
evaluations. Imprecision is represented by possibility rather than
probability distributions [41]. Karwowski and Evans [25] listed
three main reasons for incorporating fuzzy set theory in production
management research as follows: (i) in the production manage-
ment environment imprecision and vagueness are inherent to the
decision maker’s mental model of the problem under study, (ii)
the information required to formulate a model’s objective, deci-
sion variables, constraints and parameters may  be vague or not
precisely measurable, (iii) imprecision and vagueness as a result
of personal bias and subjective opinion may  further dampen the
quality and quantity of available information. The vagueness and
imprecision in qualitative factors in production systems are gener-
ally characterized in linguistic or fuzzy terms [19,22,35,41]. Karsak
and Tolga [24] declare that assessment of factors including flexibil-
ity, quality of the products, enhanced response to market demand,
and reduction in inventory can neither be reflected by crisp values
nor random processes. As a further example, Wong [60] considers
unit holding and shortage costs being imprecise and claims that
these parameters are best described with fuzzy sets theory because
it transforms qualitative estimates into quantitative values.

The literature on fuzzy set theory and its applications are
expanding considerably in the last decade. We  refer the reader to
the following work for detailed philosophy of fuzzy set theory and
its applications: Prado et al. [43], Almulhim et al. [1], Mesiar and
Stupnanova [37], Liu [32], Dubois and Prade [16], Magdalena et al.
[34], Luhandjula [33], Kahraman et al. [23], Behounek and Hanikova
[7], Tamir et al. [52]. Below we  summarize the fuzzy set theory
literature with particular emphasis on its application to lot sizing.

Fuzzy lot sizing heuristics have been a topic of interest for
the researchers for the last two  decades [21]. In terms of fuzzy
heuristics, Lee et al. [30] examine the fuzzy part period balancing
algorithm and Lee et al. [31] present a comparative study between
the fuzzy part-period balancing, the fuzzy Wagner-Whitin and the
fuzzy Silver-Meal methods. Callarman and Hamrin [11] deal with
fuzzy economic order quantity (EOQ), fuzzy Wagner-Whitin and
fuzzy part-period balancing algorithms under the conditions of a
rolling schedule and a fixed lead time. These studies are acknowl-
edged as the pioneering works of the fuzzy lot sizing problems.
A significant number of studies have applied the fuzzy sets the-
ory and techniques to develop and solve the production/inventory
problems following these pioneering works. Some noteworthy
instances include Park [42] and Vujosevic et al. [56] proposing a
fuzzy EOQ model where unit ordering cost and unit holding cost are
fuzzy. Chen et al. [12] extended the fuzzy EOQ model with backo-
rder by fuzzifying the demand and the backorder cost. Roy and Maiti
[46] also presented a fuzzy EOQ model with demand-dependent
unit cost under limited storage capacity. In the proposed EOQ model
of Yao et al. [63], both order quantity and total demand were fuzzi-
fied using triangular fuzzy numbers. Buckley et al. [8] extended
the problem into a multi-period/single item case, and solved the
problem by implementing an evolutionary algorithm under three
scenarios i) the demand is known for each period ii) the demand is
unknown and fuzzy for each period, and iii) the demand is fuzzy and
backordering is allowed. Above mentioned studies agree that fuzzy
models reflect the real world conditions more rigorously. These
studies also ascertain that, although the defuzzified total cost is
higher compared to the crisp model, the fuzzy model is more utile
since it considers the actual disturbances in the production system
[26,29].

This study examines the lot sizing rules for the operating envi-
ronment where the production process can be kept warm at some
cost if production quantity in a period exceeds a fuzzy threshold
value. We  believe that our contributions lie in adapting fuzzy lot
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