
Contents lists available at ScienceDirect

Int. J. Human–Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

Leveraging finger identification to integrate multi-touch command selection
and parameter manipulation

Alix Gogueya,⁎, Daniel Vogelb, Fanny Chevaliera, Thomas Pietrzakc, Nicolas Roussela,
Géry Casiezc

a Inria Lille – Nord Europe, 40 Avenue du Halley, 59650 Villeneuve-d'Ascq, France
b Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada
c Université de Lille, Cité Scientifique, 59650 Villeneuve-d'Ascq, France

A R T I C L E I N F O

Keywords:
Multi-touch
Finger identification
Shortcuts
Command selection
Parameter control
Direct manipulation

A B S T R A C T

Identifying which fingers are touching a multi-touch surface provides a very large input space. We describe
FingerCuts, an interaction technique inspired by desktop keyboard shortcuts to exploit this potential.
FingerCuts enables integrated command selection and parameter manipulation, it uses feed-forward and
feedback to increase discoverability, it is backward compatible with current touch input techniques, and it is
adaptable for different touch device form factors. We implemented three variations of FingerCuts, each tailored
to a different device form factor: tabletop, tablet, and smartphone. Qualitative and quantitative studies
conducted on the tabletop suggests that with some practice, FingerCuts is expressive, easy-to-use, and increases
a sense of continuous interaction flow and that interaction with FingerCuts is as fast, or faster than using a
graphical user interface. A theoretical analysis of FingerCuts using the Fingerstroke-Level Model (FLM) matches
our quantitative study results, justifying our use of FLM to analyse and validate the performance for the other
device form factors.

1. Introduction

A common belief is that multi-touch input is an excellent match for
direct manipulation interaction. Certainly panning and zooming with
two-finger pinch-to-zoom, or simultaneously rotating, translating and
scaling objects with multiple fingers are better semantic and articu-
latory translations (Hutchins et al., 1985) of real world actions than
dragging scrollbars, sliders or transformation handles. But, a direct
manipulation interface should also provide access to a variety of
commands to trigger global actions (e.g. “undo”) and contextual
actions (e.g. “delete this object”), activate modes (e.g. “start drawing
rectangles”) and modify modes (e.g. “draw rectangles from the centre”).
With a proportionately small number of possible multi-touch input
actions, most commands are represented visually, away from the object
of interest in toolbars, palettes or menus which occupy screen space
and break interaction flow into a complex and time consuming “back-
and-forth” graphical syntax (Beaudouin-Lafon, 2000). The restricted
display area together with limited input vocabulary results in real-
world touch interfaces that tend to be less rich in functionalities than
their desktop counterparts.1

In desktop computing, keyboard shortcuts provide an effective
alternative to clicking on graphical buttons when issuing commands
(Grossman et al., 2007). Once mastered, they decrease command
activation time, enable redundant palettes to be hidden, and allow
for a more fluid flow between command selection and the continuous
control of command parameters. For example, pressing the R key with
one hand could activate a “draw rectangles” mode and then the
rectangle location and size parameters can be controlled with the
mouse in the other hand. Current multi-touch input primarily uses
simultaneous touch points and long presses which provides a far more
limited vocabulary than keyboard shortcuts.

No wonder researchers and designers are constantly searching for
ways to increase the multi-touch input space using techniques like
gestures (Kin et al., 2011), touch locations (Serrano et al., 2013), touch
patterns (Ghomi et al., 2012), normal and tangential forces (Wang and
Ren, 2009), discriminating finger parts (Harrison et al., 2011) and
more. Yet, these still treat all fingers equally which confines the input
vocabulary – identifying which fingers are touching the surface
provides a much larger input space. Recent studies show that even
for single-touch command selection, finger identification is a promising

http://dx.doi.org/10.1016/j.ijhcs.2016.11.002
Received 29 January 2016; Received in revised form 31 August 2016; Accepted 10 November 2016

⁎ Corresponding author.
E-mail addresses: alix.goguey@inria.fr (A. Goguey), dvogel@uwaterloo.ca (D. Vogel), fanny.chevalier@inria.fr (F. Chevalier), thomas.pietrzak@univ-lille1.fr (T. Pietrzak),

nicolas.roussel@inria.fr (N. Roussel), gery.casiez@univ-lille1.fr (G. Casiez).
1 Wagner et al. (2014) note that the desktop version of Adobe Photoshop (CS6) has 648 menu commands while the tablet version (Express) has only 35 commands.

International Journal of Human - Computer Studies 99 (2017) 21–36

Available online 16 November 2016
1071-5819/ © 2016 Elsevier Ltd. All rights reserved.

MARK

http://www.sciencedirect.com/science/journal/10715819
http://www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2016.11.002
http://dx.doi.org/10.1016/j.ijhcs.2016.11.002
http://dx.doi.org/10.1016/j.ijhcs.2016.11.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.11.002&domain=pdf


solution to increase the touch input vocabulary (Roy et al., 2015).
Robust finger identification sensing is on the horizon (Holz and
Baudisch, 2013; Benko et al., 2009), but examples of the interaction
it enables have only been isolated point designs without cohesive
design. For example, Marquardt et al. (2011) built an exploratory
toolkit for tabletops and explored a range of interaction technique ideas
to emphasize the toolkit's expressiveness, but they did not provide a
consistent way to apply finger identification to direct manipulation
interfaces. Our research moves beyond point designs by contributing a
cohesive finger identification-enabled interaction technique focused on
the classic goal of merging command selection with direct manipula-
tion of command parameters (Guimbretière et al., 2005; Bier et al.,
1993).

We contribute FingerCuts, an interaction technique inspired by
keyboard shortcuts that leverages finger identification for direct
manipulation. In desktop computing, experts typically use keyboard
shortcuts in three steps: (1) the non-dominant hand triggers a
command with a key; (2) the dominant hand manipulates with a
pointing device; and (3) the non-dominant hand optionally tunes
manipulation with a modifier key. With finger identification-enabled
touch, a similar three-step pattern can be adopted and made universal
so that subsequent command selection and manipulation are perfectly
merged: (1) one set of fingers selects a command mapping for another
set of fingers (e.g. the thumb and index finger chord in Fig. 1(a) shows
a set of possible drawing commands); (2) another finger triggers a
command and immediately begins direct manipulation of command
parameters (e.g. the middle finger draws and adjusts the size of a
rectangle in Fig. 1(b, c))— at this point, the fingers used to select the
command mapping can be released; and (3) the first set of fingers
optionally tunes the manipulation (e.g. the middle finger of the non-
dominant hand specifies the mode of drawing, namely from the centre,
in Fig. 1(d)). For novices, the progression of actions provides an
opportunity to display simple feed-forward (Wensveen et al., 2004) for
discoverability. For experts, this progression of overlapping finger
actions forms a tightly coupled phrase that can be chunked (Buxton,
1986).

We perform a systematic analysis of the finger identification
interaction space to motivate practical design considerations for
FingerCuts. These argue for maintaining backward compatibility with
the existing multi-touch techniques like pinch-to-zoom, and guide
designers when applying the technique to different device form factors.
To demonstrate how FingerCuts works in different device form factors,
we implemented it in a vector drawing application for a tabletop, a
document annotation application for a tablet, and a messaging
application for a smartphone.2 We evaluate the tabletop version in
two user studies. A qualitative study suggests that with some practice,
FingerCuts is expressive, easy-to-use, and increases a sense of con-
tinuous interaction flow. A quantitative study shows that FingerCuts
can be as fast, or faster than a traditional graphical user interface,
primarily due to the lower number of operations required. A
Fingerstroke-Level Model (FLM) analysis supports the results of the
tabletop quantitative study and enables us to generalize these results to
the tablet and smartphone form factors.

2. Background and related work

A direct manipulation interface must provide a way to issue
commands to the system. There are commands for global actions
(e.g. “undo”) and contextual actions to be performed on a specified
object (e.g. “delete this rectangle”). There are also commands to
activate modes, where the system should start interpreting input in a
particular way (e.g. “start drawing rectangles”). Modes are conceptually
associated with real world tools. Commands can also modify the
current mode (e.g. “keep drawing rectangles, but draw them from the
centre”). These modifiers are often temporarily maintained by a
kinesthetic action, such as holding a key down. At a command level,
this means a key down sends a command to start modifying the current
mode and a key up stops modifying the current mode. This same
temporary kinesthetic action can be applied to modes, which are then
called “quasimodes” (Raskin, 2000).

Providing an efficient way to trigger all these commands is
challenging with multi-touch. Multiple points of contact provide some
expression, but nowhere near the discrete input space of keyboard
shortcuts. Techniques to increase the multi-touch input space have
focused on spatial information, dwell timeouts, motion to enrich the
interaction vocabulary, and even cross device interactions (Chen et al.,
2014; Houben et al., 2015). However, these also increase time (e.g.
dwell) or space offset (e.g. gestures) and they move the user's focus
away from the primary object of interest (Beaudouin-Lafon, 2000).

2.1. Finger identification

Finger identification—associating specific fingers and hands with
touch points—is a way to increase the multi-touch input space.
Significant previous work has tackled the technical sensing problem
with approaches like: inferring finger identity based on geometric
relationships between touch contact points (Au and Tai, 2010;
Ewerling et al., 2012; Vinayak Murugappan et al., 2012; Westerman,
1999; Lepinski et al., 2010; Wagner et al., 2014); using an overhead
camera to track bare hands (Malik et al., 2005) or fingers with coloured
rings (Wang and Canny, 2004); wearing gloves with fiducial markers
(Marquardt et al., 2011); recognizing fingerprints (Sugiura and Koseki,
1998; Holz and Baudisch, 2013); forearm electromyography (Benko
et al., 2009); and using RFID attached to fake plastic nails (Vega and
Fuks, 2013). It seems inevitable that one day finger identification will
be a standard feature of consumer multi-touch devices. Our interest is
interaction, not sensing, so we focus our review on interaction
techniques enabled by finger identification rather than the underlying
technologies.

2.1.1. Invoking commands with fingers and chords
Independent of sensing approach, a common interaction technique

to demonstrate the potential of finger identification is associating a
different command with each finger. Sugiura and Koseki (1998) used
the index, middle, ring, and little fingers to operate a music player and
add web browser bookmarks. Marquardt et al. (2011) mapped the
middle and little fingers to cut and copy commands. However, with
only 10 fingers, a limited set of commands can be triggered.

By recognizing chords—the simultaneous contact of two or more

Fig. 1. A bimanual tabletop example of how FingerCuts merges command selection with direct manipulation of command parameters with feed-forward: (a) specific finger chords with
non-dominant hand displays feed-forward showing possible commands, e.g. thumb and index finger chord shows different drawing modes; (b) dominant hand selects command using
specific corresponding finger, e.g. middle finger triggers mode activation command to “start drawing rectangle”; (c) dominant hand movement provides continuous control of command
parameters, e.g. specifies the size of the rectangle; (d) other specific fingers with non-dominant hand further tunes the command parameters, e.g. middle finger modifies draw rectangle
mode to “draw rectangle from the centre”. See Section 6 for a restricted bimanual example with a tablet and unimanual example with a smartphone.

2 Video demonstration at http://ns.inria.fr/mjolnir/fingercut-ijhcs

A. Goguey et al. International Journal of Human - Computer Studies 99 (2017) 21–36

22



Download English Version:

https://daneshyari.com/en/article/4945857

Download Persian Version:

https://daneshyari.com/article/4945857

Daneshyari.com

https://daneshyari.com/en/article/4945857
https://daneshyari.com/article/4945857
https://daneshyari.com

