
Contents lists available at ScienceDirect

Int. J. Human–Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

A Monte Carlo simulation approach for quantitatively evaluating keyboard
layouts for gesture input

Rylan T. Conwaya,⁎, Evan W. Sangalineb

a Physics Department, University of California, Davis, CA, USA
b National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI, USA

A R T I C L E I N F O

Keywords:
Touchscreen keyboards
Gesture input
Model-based design
Monte Carlo simulation

A B S T R A C T

Gesture typing is a method of text entry that is ergonomically well-suited to the form factor of touchscreen
devices and allows for much faster input than tapping each letter individually. The QWERTY keyboard was,
however, not designed with gesture input in mind and its particular layout results in a high frequency of gesture
recognition errors. In this paper, we describe a new approach to quantifying the frequency of gesture input
recognition errors through the use of modeling and simulating realistically imperfect user input. We introduce
new methodologies for modeling randomized gesture inputs, efficiently reconstructing words from gestures on
arbitrary keyboard layouts, and using these in conjunction with a frequency weighted lexicon to perform Monte
Carlo evaluations of keyboard error rates or any other arbitrary metric. An open source framework, Dodona, is
also provided that allows for these techniques to be easily employed and customized in the evaluation of a wide
spectrum of possible keyboards and input methods. Finally, we perform an optimization procedure over
permutations of the QWERTY keyboard to demonstrate the effectiveness of this approach and describe ways
that future analyses can build upon these results.

1. Introduction

The advent of smartphones and tablets has made the use of
touchscreen keyboards pervasive in modern society. However, the
ubiquitous QWERTY keyboard was not designed with the needs of a
touchscreen keyboard in mind, namely accuracy and speed. The
introduction of gesture or stroke-based input methods significantly
increased the speed that text could be entered on touchscreens
(Montgomery, 1982; Zhai and Kristensson, 2003; Zhai et al., 2009;
Kushler and Marsden, 2006). However, this method introduces some
new problems that can occur when the gesture input patterns for two
words are too similar, or sometimes completely ambiguous, leading to
input errors. An example gesture input error is illustrated in Fig. 1. A
recent study showed that gesture input has an error rate that is about
5–10% higher compared to touch typing (Bi et al., 2013). With the fast
and inherently imprecise nature of gesture input the prevalence of
errors is unavoidable and the need to correct these errors significantly
slows down the rate of text entry. The QWERTY keyboard in particular
is poorly suited as a medium for swipe input. Characteristics such as
the “u”, “i”, and “o” keys being adjacent lead to numerous gesture
ambiguities and potential input errors. It is clearly not the optimal
layout for gesture input.

The rise of digital keyboard use, first on stylus based keyboards in

the 1990s and then on modern touchscreens a decade later, has led to a
lot of research and development in breaking away from QWERTY to a
layout that is statistically more efficient. This work resulted in various
improved layouts for digital stylus keyboards such as the OPTI
keyboard (MacKenzie and Zhang, 1999), the Metropolis and Hooke
keyboards (Zhai et al., 2000), and the ATOMIK keyboard (Zhai et al.,
2002). In addition to statistical efficiency, attempts were also made to
improve statistical efficiency while simultaneously making the new
layout as easy to use for novices as possible (Zhai and Smith, 2001).

More recently, a few keyboards have been introduced that improve
text input for certain situations on modern smartphones and tablets:
optimizing for the speed of two-thumb text entry on tablets (Oulasvirta,
2013); optimizing tap-typing ambiguity (the SWRM keyboard) and
simultaneously optimizing single-finger text entry for speed, reduced
tap-typing ambiguity, and familiarity with the QWERTY keyboard (the
SATH keyboard) (Dunlop and Levine, 2012); and optimizing the
autocorrect feature itself to simultaneously increase the accuracy of
word correction and completion (Bi, 2014).

Most of the aforementioned work was done specifically for touch
typing since that is the most common form of text input on touchscreen
devices. However, the relatively recent rise in popularity of gesture
typing has led to some interesting new keyboard layouts that were
specifically optimized for improved gesture typing performance. The

http://dx.doi.org/10.1016/j.ijhcs.2016.10.001
Received 14 December 2015; Received in revised form 4 October 2016; Accepted 6 October 2016

⁎ Corresponding author.

International Journal of Human - Computer Studies 99 (2017) 37–47

Available online 11 October 2016
1071-5819/ © 2016 Published by Elsevier Ltd.

MARK

http://www.sciencedirect.com/science/journal/10715819
http://www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2016.10.001
http://dx.doi.org/10.1016/j.ijhcs.2016.10.001
http://dx.doi.org/10.1016/j.ijhcs.2016.10.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.10.001&domain=pdf

Square OSK and Hexagon OSK keyboards were optimized to maximize
gesture input speed using Fitt's law (Rick, 2010). Various optimizations
were also done by Smith, Bi, and Zhai while maintaining some
familiarity with QWERTY by using the same layout geometry and only
changing the letter placements. This resulted in four new keyboards:
the GK-C keyboard, which is optimized to maximize gesture input
clarity; the GK-S keyboard, which is optimized for gesture input speed;
the GK-D keyboard, which was simultaneously optimized for gesture
clarity and speed using Pareto optimization; and the GK-T keyboard,
which was simultaneously optimized for gesture clarity, gesture speed,
and QWERTY similarity (Smith et al., 2015).

Evaluating and comparing various keyboard layouts is a difficult
problem given the complexity and variability associated with text entry.
Measuring text entry and error rates from user based trials is typically
done to evaluate or directly compare the effectiveness of various
keyboards and input methods. These studies usually require the test
subjects to transcribe a set of predefined phrases using a specified input
device. Text entry evaluations of mini-QWERTY keyboards (Clarkson
et al., 2005), chording keyboards (Lyons et al., 2006), handwriting
recognition systems (Kristensson and Denby, 2009), and various
gesture input systems (Castellucci and MacKenzie, 2008; Wobbrock,
Chau, and Myers, Wobbrock et al.2007) have all been done using this
approach. The main downside of this approach is the fact that in day-
to-day use most users spend very little time transcribing phrases. The
majority of text entry is done by composing original phrases. Therefore,
text entry evaluations from transcription based user studies are not
realistic and can introduce unintended biases into the results. Vertanen
and Kristensson showed how these biases can be mitigated by includ-
ing composition tasks in user trials to complement the standard
transcription tasks (Vertanen and Kristensson, 2014).

Despite the recent work done to improve text entry evaluations with
user based studies the metrics used for optimization are typically based
on surrogate models of the actual performance characteristic of
interest. For example, the gesture clarity metric used by Smith et al.
(2015) is correlated with how frequently words are correctly recon-
structed but does not measure this directly. The reason that these
approximate measures have been used is that accurately evaluating real
keyboard reconstruction error rates would require an immense amount
of user input data. Modern optimization techniques typically evaluate
and compare hundreds of thousands of different keyboard layouts,
making it completely infeasible to obtain the necessary user data. The
methodology that we propose allows for the direct evaluation of gesture
reconstruction error rates, or any other desired metric, by simulating
realistic user interactions with a keyboard. This is similar to the
approach used by Fowler et al. when they simulated noisy tap typing
input to estimate the effect of language model personalization on word
error rate (Fowler et al., 2015).

To demonstrate the effectiveness of our methodology we will show
how it can be used to find a keyboard layout that minimizes gesture
input errors. This requires accurately modeling gesture input for a
given layout, interpreting the input, and quantifying how frequently
typical inputs would be misinterpreted. We employ several different
models for gesture input and a dictionary of the most common words in
the English language to simulate realistic usage and take into account
variations between users. We also attempt to develop a highly accurate
algorithm for recognizing gesture inputs that is not limited to a specific
keyboard layout. It should be noted that although this paper focuses on
the error rate performance, the overall methodology can be used to
evaluate and compare keyboard layouts based on any performance
measure.

Finally, In order to address the problem we designed and built an
open source software framework, called Dodona, for exploring different
input methods. This framework is well suited for examining a wide
range of possible keyboard designs and input models. It was built with
optimization in mind and has a focus on efficient implementations and
extensibility. The library is freely available on GitHub (Conway and
Sangaline, 2015) and was used to perform the analysis and generate all
keyboard related graphics presented here.

2. Modeling swipe input

An extremely large dataset of gesture inputs is needed in order to
accurately evaluate the error rate of a given keyboard layout. The only
way to obtain such a dataset on a reasonable time-scale is to generate
gesture input data based on models of user input. To accomplish this
we developed several models which can take a word and produce what
we refer to as a gesture input vector, a sequential series of x y t(, ,)
points that represent discrete samples along a gesture input pattern.
We then used words that were randomly generated based on their
frequency of use in the English language to feed into these models and
generate realistic sets of input.

2.1. Input vectors and interpolations

In general, our input model can produce either a “random vector”
or a “perfect vector”. The former is used for realistic, inexact gesture
input while the latter represents the ideal input pattern that is free
from variation. To construct random vectors we begin by drawing
control points for each letter in a given word from a two dimensional
Gaussian distribution that's centered around each corresponding key
on the keyboard. The x and y widths of the Gaussian, in addition to the
correlation in the offsets between subsequent control points, can be
changed as parameters of the input model. We then interpolate
between these control points for each letter to produce a continuous
gesture input as a function of time. This is then sampled at evenly
spaced intervals along the entire interpolation in order to produce an
input vector with a set number of points. Perfect vectors are con-
structed in the same way but use the centers of the keys as control
points. The idea that their exists a unique perfect vector for each word
in the lexicon was first introduced by Kristensson and Zhai in their
seminal paper about the SHARK2 text input system for stylus key-
boards (Kristensson and Zhai, 2004). In their work they refer to perfect
vectors as sokgraphs.

We chose to implement a variety of different interpolations to
account for the variations in individual gesture input style. We settled
on five different interpolation techniques: a straight-line spatial inter-
polation, a natural cubic spline, a cubic Hermite spline (Bartles et al.,
1998), a monotonic cubic Hermite spline (Dougherty et al., 1989), and
a modified natural cubic spline where the first and last segments are
required to be straight lines.

Using randomly generated control points with various interpolation
techniques allows us to capture a large range of input possibilities. This
is demonstrated in Fig. 2, which shows five different possible swipe

Fig. 1. A gesture input collision between the words “while” and “whole”. The gesture
input pattern, represented by the series of green markers, was intended to represent the
word “whole” but instead was incorrectly matched with the word “while”. (For
interpretation of the references to color in this figure caption, the reader is referred to
the web version of this paper.)

R.T. Conway, E.W. Sangaline International Journal of Human - Computer Studies 99 (2017) 37–47

38

Download English Version:

https://daneshyari.com/en/article/4945858

Download Persian Version:

https://daneshyari.com/article/4945858

Daneshyari.com

https://daneshyari.com/en/article/4945858
https://daneshyari.com/article/4945858
https://daneshyari.com

