
Contents lists available at ScienceDirect

Int. J. Human–Computer Studies

journal homepage: www.elsevier.com/locate/ijhcs

Automatic detection of usability smells in web applications

Julián Grigeraa,⁎, Alejandra Garridoa,b, José Matías Riveroa,b, Gustavo Rossia,b

a LIFIA, Facultad de Informática, UNLP, La Plata, Argentina
b CONICET, Argentina

A R T I C L E I N F O

Keywords:
Usability testing
Web-based interaction
Refactoring
Log analysis

A B S T R A C T

Usability assessment of web applications continues to be an expensive and often neglected practice. While large
companies are able to spare resources for studying and improving usability in their products, smaller businesses
often divert theirs in other aspects. To help these cases, researches have devised automatic approaches for user
interaction analysis, and there are commercial services that offer automated usability statistics at relatively low
fees. However, most existing approaches still fall short in specifying the usability problems concretely enough to
identify and suggest solutions. In this work we describe usability smells of user interaction, i.e., hints of usability
problems on running web applications, and the process in which they can be identified by analyzing user
interaction events. We also describe USF, the tool that implements the process in a fully automated way with
minimum setup effort. USF analyses user interaction events on-the-fly, discovers usability smells and reports
them together with a concrete solution in terms of a usability refactoring, providing usability advice for deployed
web applications.

1. Introduction

Web applications help us in many of our daily life activities, like
shopping, news reading, social interaction, home banking, trip plan-
ning or requesting a doctor's appointment. Every day new websites
appear broadening our possibilities to accomplish tasks comfortably
from home, and yet many times they suffer from usability problems
that make them awkward and hard to use. As Nielsen said, usability
rules the web, and it is crucial for a website's success (Nielsen and
Loranger, 2006; Gregg and Walczak, 2010). Companies acknowledge
that competition is so high that they will hardly survive if they do not
invest in usability, although it still remains expensive and therefore
neglected despite the progress in research and tools (Nielsen and
Loranger, 2006).

One of the most popular ways of evaluating usability is by
conducting usability tests, particularly, user tests (Rubin and
Chisnell, 2008). The benefit of user testing over inspection methods
like heuristic evaluations is that it captures real usage data and users’
experiences. The down-side, however, is that it requires recruiting
users and spending time and resources for experts first to design the
tests and afterwards to analyze the results, discover the problems and
find solutions for those problems.

To overcome the need of having the expert manually collecting and
comparing test results, different automated approaches exist for

remote user testing. Several approaches log user interaction (UI)
events and perform some log analysis to help the expert discover usage
patterns (Santana and Baranauskas, 2015). The results are usually
presented with sophisticated visualization tools that allow comparing
user event sequences with an optimal sequence. However, these tools
rarely provide suggestions to help designers improve their artifacts; the
expert is still needed to detect concrete usability problems in the
deviations among event sequences, and find a solution (Fernandez
et al., 2011). Moreover, the set of usability problems that can be
recognized by comparing event sequences is limited (for instance, a
frequently performed activity could be unnecessarily long for all users).
In turn, there are many sources of usability guidelines and good
practices in the literature, though it is still hard for a developer to
identify which of these guidelines address a particular problem that
appears on a running application.

Our proposal for overcoming these two issues related to dynamic
usability assessment and repair is to extend event logging analysis to
report concrete problems that are solvable through refactoring. Being
an agile practice, refactoring allows improving usability in an incre-
mental way using feedback from users, even (especially) in already
deployed applications (Garrido et al., 2011). Moreover, refactorings are
beneficial not only as cataloged, mechanized solutions, but also because
each solution is linked to the particular problem or "smell" that it
solves. In the case of usability, we call them usability smells (Garrido

http://dx.doi.org/10.1016/j.ijhcs.2016.09.009
Received 12 December 2015; Received in revised form 13 September 2016; Accepted 17 September 2016

⁎ Corresponding author.
E-mail addresses: julian.grigera@lifia.info.unlp.edu.ar (J. Grigera), garrido@lifia.info.unlp.edu.ar (A. Garrido), mrivero@lifia.info.unlp.edu.ar (J.M. Rivero),

gustavo@lifia.info.unlp.edu.ar (G. Rossi).

Int. J. Human–Computer Studies 97 (2017) 129–148

1071-5819/ © 2016 Elsevier Ltd. All rights reserved.
Available online 19 September 2016

crossmark

http://www.sciencedirect.com/science/journal/10715819
http://www.elsevier.com/locate/ijhcs
http://dx.doi.org/10.1016/j.ijhcs.2016.09.009
http://dx.doi.org/10.1016/j.ijhcs.2016.09.009
http://dx.doi.org/10.1016/j.ijhcs.2016.09.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijhcs.2016.09.009&domain=pdf


et al., 2011).
In our current work, we aim at providing automatic advice about

usability smells of user interaction for deployed web applications. Our
automated strategy to usability smell recognition is based on the
analysis of user interaction (UI) events. Thus, we extend previous
work in this area by linking specific UI events to usability smells,
defining new usability smells, and reporting usability smells on-the-fly
at an abstraction level which makes it possible to suggest concrete
solutions for them in terms of refactorings.

We have implemented the approach in a tool called USF (Usability
Smells Finder). The tool can be used as a service (SaaS) with minimal
setup effort, and is able to provide up-to-the-minute advice for
deployed web applications. It is implemented in a way that allows for
the extension of usability smells' detection strategies. Therefore, it is
targeted to a broad audience of practitioners with different levels of
usability expertize. On the one hand, usability experts may use USF to
get rapid feedback of real interactions from a mass of users, configuring
the tool to their needs. On the other hand, developers without usability
expertize may use USF after a simple installation, let the tool gather
evidence to diagnose usability problems and implement the solutions
that it suggests.

The structure of the rest of the article is as follows: the next section
presents background on usability refactoring and our catalog of
usability smells for user interaction. Section 2 provides background
and describes the differences and similarities with related work.
Section 3 describes the usability smells used in this work, while
Section 4 describes in detail the process of usability smell recognition
and reporting, starting from the analysis of UI events, their abstraction
to a mid-level concept called usability events, and the filtering and
aggregation of usability events into usability smells. Section 5 provides
the architecture and implementation details of the tool. Section 6
presents two experiments that we ran to assess the accuracy and
versatility of the process and tool, and finally Section 7 concludes the
article with contributions and future work.

2. Related work

In this section, we will review different approaches related to
different aspects of our proposal. We first provide a background on
refactoring and bad smells, their specific application in the context of
web usability, and our previous work on the definition of usability
smells. We then review usability evaluation methods in general, and
place our work into their classifications. Then, we review log analysis
and visualization methods, following with remote user testing and
finally we describe the most relevant approaches we found to be closer
to our proposal.

2.1. Background on usability and refactoring-based tools

Our work in usability takes many ideas from code refactoring.
Refactoring was originally defined by Opdyke as a transformation that
preserves behavior, aimed at improving the internal design of code
(Opdyke, 1992). Later on, Fowler popularized the technique by
publishing a catalog of refactorings for object-oriented code (Fowler,
1999). The refactorings in Fowler's catalog seek to improve internal
quality measures like understandability, extensibility and maintain-
ability of the different components in an object-oriented program like
methods, classes and hierarchies, as well as data and conditional
expressions. For example, "Extract Method" turns a piece of code into
its own method, with an appropriate name that explains its purpose.
The power of refactoring lies in helping non-experts to identify
potential problems in the target aspect and traverse through a series
of small steps towards a good solution for those problems. In the
refactoring jargon, these potential problems are called "bad smells",
and their presence likely means that the code needs refactoring. For
example, the refactoring "Extract Method" is intended to solve smells

like "Long Method" and "Duplicate Code" (Fowler, 1999).
The refactoring technique became an essential practice of agile

methodologies, and its scope was soon extended to other programming
paradigms and beyond improving internal qualities of code into
improving external qualities of software, like database safety (Ambler
and Sadalage, 2006), parallel programs' performance (Dig, 2011), and
web application's navigability (Cabot and Gómez, 2008). In 2007, we
started working on the application of refactoring to improve the
usability of web applications (Garrido et al., 2007). We defined
usability refactorings as changes to the navigation, presentation or
business processes of a web application with the purpose of improving
its usability, while preserving the expected functionality and result
(Garrido et al., 2011). With these refactorings, developers may attain
usability enhancements like a balanced distribution of content in the
screen and among pages, a better navigation structure and process
workflow, proper support for the user while executing a business
process, etc. An example of a usability refactoring is "Provide
Breadcrumbs", to help users keep track of their navigation path up
to the current page (Garrido et al., 2011).

Similarly to bad smells in code ("code smells" for short), we have
defined usability smells as indicators of possible problems that need
refactoring (Garrido et al., 2011), where the problems relate to any
aspect of the quality in use of a web application: effectiveness in use,
efficiency in use, or satisfaction in use (ISO, 2011). In our earlier work,
usability smells were cataloged to be manually recognized at different
model levels (Garrido et al., 2011). Examples of these smells are
"Absence of meaningful links" (in the navigation model), "Cluttered
interface" (in the presentation model), and "Long activity" (in the
process model).

In a later work, we developed a framework that allows applying
usability refactorings on the client side, thus reducing the cost of
changing a running system at the server (Garrido et al., 2013). We also
developed a catalog with new usability refactorings and usability smells
(Distante et al., 2014). The refactorings in this catalog may be applied
either at the model level, in a model-driven development approach or
at the client-side, and usability smells may be discovered in the models
or by manually inspecting the results of user tests. An example of
usability refactoring from that catalog is Change the widget used to
execute an activity, aimed at replacing a widget that has been found
awkward to use or produce errors for a more appropriate one, e.g.
replacing free textboxes with calendar widgets for selecting dates, or
selection boxes for ranged values. In the catalog, the usability smell
that triggers this refactoring is Risk of error. Other cataloged usability
smells are Difficult access to information, User confusion, and Process
inflexibility (Distante et al., 2014).

Moreover, we have conducted a statistical test to measure the real
gain that usability refactorings produce on effectiveness in use,
efficiency in use and satisfaction in use (Grigera et al., 2016). For the
experiment, detecting usability smells was not a simple task, as it
required manual expert intervention to go through the results of user
tests.

Finally, in the context of refactoring, our process for smells
detection could be compared to the work of Lanza and Marinescu
(2006) to systematically detect bad smells in code: they use well-known
object-oriented metrics and metric-based patterns as detection strate-
gies to identify potential bad smells and structural design problems and
provide the appropriate refactorings as recovery means. In a similar
way, we use UI event patterns to characterize usability smells and
suggest usability refactorings for most cases.

2.2. Usability evaluation methods

Like Hornbæk (2006) said in his review back, usability cannot be
directly measured, so researchers must select usability aspects that can
be measured and represent valid indicators of usability, like in the
model proposed by Seffah et al. (2006). There are different ways to

J. Grigera et al. Int. J. Human–Computer Studies 97 (2017) 129–148

130



Download English Version:

https://daneshyari.com/en/article/4945874

Download Persian Version:

https://daneshyari.com/article/4945874

Daneshyari.com

https://daneshyari.com/en/article/4945874
https://daneshyari.com/article/4945874
https://daneshyari.com

