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Solving generic nonarchimedean semidefinite programs
using stochastic game algorithms

Xavier Allamigeon, Stéphane Gaubert, Mateusz Skomra

Abstract

A general issue in computational optimization is to develop combinatorial algorithms for semidefinite program-
ming. We address this issue when the base field is nonarchimedean. We provide a solution for a class of semi-
definite feasibility problems given by generic matrices. Our approach is based on tropical geometry. It relies
on tropical spectrahedra, which are defined as the images by the valuation of nonarchimedean spectrahedra. We
establish a correspondence between generic tropical spectrahedra and zero-sum stochastic games with perfect in-
formation. The latter have been well studied in algorithmic game theory. This allows us to solve nonarchimedean
semidefinite feasibility problems using algorithms for stochastic games. These algorithms are of a combinatorial
nature and work for large instances.
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1. Introduction

Semidefinite programming consists in optimizing a linear function over a spectrahedron. The latter is a subset
of Rn defined by linear matrix inequalities, i.e., a set of the form

S = {x ∈ Rn : Q(0) + x1Q(1) + · · · + xnQ(n) � 0}
where the Q(k) are symmetric matrices of order m, and � denotes the Loewner order on the space of symmetric
matrices. By definition, X � Y if and only if X − Y is positive semidefinite.

Semidefinite programming is a fundamental tool in convex optimization. It is used to solve various applica-
tions from engineering sciences, and also to obtain approximate solutions or bounds for hard problems arising
in combinatorial optimization and semialgebraic optimization. We refer the reader to Blekherman, Parrilo, and
Thomas (2013) and Gärtner and Matoušek (2012) for information.

Semidefinite programs are usually solved via interior point methods. The latter provide an approximate solu-
tion in a polynomial number of iterations, provided that a strictly feasible initial solution, i.e., a point belonging
to the interior of the set S, is known. We refer the reader to de Klerk and Vallentin (2016) for a detailed analysis
of the complexity in the bit model of interior point methods for semidefinite programming, and for a discussion of
earlier complexity results based on the ellipsoid method.

Semidefinite programming becomes a much harder matter if one requires an exact solution. The feasibility
problem (deciding the emptiness of the set S) belongs to NPR ∩ coNPR, where the subscript R refers to the BSS
model of computation (Ramana, 1997). It is not known to be in NP in the bit model. A difficulty here is that all
feasible points may have entries of absolute value doubly exponential in the size of the input. Also, there may be
no rational solution (Scheiderer, 2016). Beyond their theoretical interest, exact algorithms for semidefinite pro-
gramming may be useful to address problems of formal proofs, which sometimes lead to challenging (degenerate)
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