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Abstract

Extending Eulerian polynomials and Faulhaber’s formula1, we study several combi-
natorial aspects of harmonic sums and polylogarithms at non-positive multi-indices
as well as their structure. Our techniques are based on the combinatorics of non-
commutative generating series in the shuffle Hopf algebras giving a global process
to renormalize the divergent polyzetas at non-positive multi-indices.
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1. Introduction

The story begins with the celebrated Euler sum [15]

ζ(s) =
∑
n≥1

n−s, s ∈ N, s > 1.

Euler gave an explicit formula expressing the following ratio (with i2 = −1) :

∀j ∈ N+,
ζ(2j)

(2iπ)2j
= −1

2

b2j
(2j)!

∈ Q, (1)

where {bj}j∈N are the Bernoulli numbers. Multiplying two such sums, he obtained

ζ(s1)ζ(s2) = ζ(s1, s2) + ζ(s1 + s2) + ζ(s2, s1),

where the polyzeta are given by

ζ(s1, . . . , sr) =
∑

n1>...>nr>0

n−s1
1 . . . n−sr

r , r, s1, . . . , sr ∈ N+, s1 > 1.

1First seen and computed up to order 17 by Faulhaber. The modern form and proof are
credited to Bernoulli [35].
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