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The row (resp. column) rank profile of a matrix describes the stair-
case shape of its row (resp. column) echelon form. We describe 
a new matrix invariant, the rank profile matrix, summarizing 
all information on the row and column rank profiles of all the 
leading sub-matrices. We show that this normal form exists and 
is unique over a field but also over any principal ideal domain 
and finite chain ring. We then explore the conditions for a 
Gaussian elimination algorithm to compute all or part of this 
invariant, through the corresponding PLUQ decomposition. This 
enlarges the set of known elimination variants that compute 
row or column rank profiles. As a consequence a new Crout 
base case variant significantly improves the practical efficiency 
of previously known implementations over a finite field. With 
matrices of very small rank, we also generalize the techniques 
of Storjohann and Yang to the computation of the rank profile 
matrix, achieving an (rω + mn)1+o(1) time complexity for an m × n
matrix of rank r, where ω is the exponent of matrix multiplication. 
Finally, we give connections to the Bruhat decomposition, and 
several of its variants and generalizations. Consequently, the 
algorithmic improvements made for the PLUQ factorization, and 
their implementation, directly apply to these decompositions. In 
particular, we show how a PLUQ decomposition revealing the rank 

✩ This research was partly supported by the HPAC project of the French Agence Nationale de la Recherche (ANR 11 BS02 013) 
and the OpenDreamKit Horizon 2020 European Research Infrastructures project (#676541).

E-mail addresses: jean-guillaume.dumas@imag.fr (J.-G. Dumas), clement.pernet@imag.fr (C. Pernet), ziad.sultan@imag.fr
(Z. Sultan).

URLs: http://www-ljk.imag.fr/membres/Jean-Guillaume.Dumas/ (J.-G. Dumas), http://lig-membres.imag.fr/pernet/ (C. Pernet), 
http://moais.imag.fr/membres/ziad.sultan (Z. Sultan).

http://dx.doi.org/10.1016/j.jsc.2016.11.011
0747-7171/© 2016 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.jsc.2016.11.011
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jsc
mailto:jean-guillaume.dumas@imag.fr
mailto:clement.pernet@imag.fr
mailto:ziad.sultan@imag.fr
http://www-ljk.imag.fr/membres/Jean-Guillaume.Dumas/
http://lig-membres.imag.fr/pernet/
http://moais.imag.fr/membres/ziad.sultan
http://dx.doi.org/10.1016/j.jsc.2016.11.011


JID:YJSCO AID:1749 /FLA [m1G; v1.191; Prn:18/11/2016; 14:06] P.2 (1-24)

2 J.-G. Dumas et al. / Journal of Symbolic Computation ••• (••••) •••–•••

profile matrix also reveals both a row and a column echelon form 
of the input matrix or of any of its leading sub-matrices, by a 
simple post-processing made of row and column permutations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Triangular matrix decompositions are widely used in computational linear algebra. Besides solving 
linear systems of equations, they are also used to compute other objects more specific to exact arith-
metic: computing the rank, sampling a vector from the null-space, computing echelon forms and rank 
profiles.

The row rank profile (resp. column rank profile) of an m × n matrix A with rank r, denoted by 
RowRP(A) (resp. ColRP(A)), is the lexicographically smallest sequence of r indices of linearly indepen-
dent rows (resp. columns) of A. An m × n matrix has generic row (resp. column) rank profile if its 
row (resp. column) rank profile is (1, .., r). Lastly, an m ×n matrix has generic rank profile if its r first 
leading principal minors are nonzero. Note that if a matrix has generic rank profile, then its row and 
column rank profiles are generic, but the converse is false: the matrix 

[
0 1
1 0

]
does not have generic 

rank profile even if its row and column rank profiles are generic. The row support (resp. column 
support) of a matrix A, denoted by RowSupp(A) (resp. ColSupp(A)), is the subset of indices of its 
nonzero rows (resp. columns).

We recall that the row echelon form of an m × n matrix A is an upper triangular matrix E = T A, 
for a nonsingular matrix T , with the zero rows of E at the bottom and the nonzero rows in stair-case 
shape: min{ j : ai, j �= 0} < min{ j : ai+1, j �= 0}. As T is nonsingular, the column rank profile of A is 
that of E , and therefore corresponds to the column indices of the leading elements in the staircase. 
Similarly the row rank profile of A is composed of the row indices of the leading elements in the 
staircase of the column echelon form of A.

Rank profiles and triangular matrix decompositions The rank profiles of a matrix and the triangular 
matrix decompositions obtained by Gaussian elimination are strongly related. The elimination of ma-
trices with arbitrary rank profiles gives rise to several matrix factorizations and many algorithmic 
variants. In numerical linear algebra one often uses the PLUQ decomposition, with P and Q per-
mutation matrices, L a lower unit triangular matrix and U an upper triangular matrix. The LSP and 
LQUP variants of Ibarra et al. (1982) have been introduced to reduce the complexity of rank defi-
cient Gaussian elimination to that of matrix multiplication. Many other algorithmic decompositions 
exist allowing fraction free computations (Jeffrey, 2010), in-place computations (Dumas et al., 2008;
Jeannerod et al., 2013) or sub-cubic rank-sensitive time complexity (Storjohann, 2000; Jeannerod et 
al., 2013). The reader may refer to Jeannerod et al. (2013) for a detailed comparison between these 
matrix factorizations, and further details on the CUP (resp. PLE) variants, revealing the row (resp. col-
umn) rank profiles. All these algorithms, together with the schoolbook Gaussian elimination algorithm 
share the property that, for a row rank profile computation, the pivot search processes rows in order, 
and searches a pivot in all possible column position before declaring the row linearly dependent with 
the previous ones. As a consequence, blocking is limited to only one dimension (in this case the row 
dimension) leading to slab algorithms (Klimkowski and van de Geijn, 1995) operating on rectangular 
blocks of unbalanced dimensions. This reduces the data locality of the algorithm, and therefore penal-
izes the efficiency of implementations in practice. In parallel, this blocking also puts more constrains 
on the dependencies between tasks (Dumas et al., 2015a).

Contribution with respect to the state of the art In Dumas et al. (2013) we proposed a first Gaussian 
elimination algorithm, with a recursive splitting of both row and column dimensions, which simul-
taneously computes the row and column rank profile while preserving the sub-cubic rank-sensitive 
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